
 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Systems Analysis and Design 
 

Course Summary 
Description 
 
This course is a comprehensive overview of systems analysis and design concepts and techniques and their 
application to IT projects.  The course compares and contrasts the major systems development life cycles 
(SDLCs) commonly used in software systems development as well as the dominant development paradigms – 
the structured versus object oriented approaches. 
 
The presentation of the material focuses on the engineering pragmatics of getting a working system built, 
deployed and operational without attempting to promote one specific paradigm or technology over another.  
The benefits and costs of the Agile approach versus the waterfall or an iterative SDLC, and the choice of the 
OO approach or the structured approach are presented.  The goal is to teach students to make realistic cost-
benefit analysis of these technologies in a real world environment. 
 
How the standard engineering development cycle is implemented in each of these SDLCs is traced from 
requirements to solution specification to design and planning to construction and project management. The 
issues of operational maintenance, change management and system retirement are also examined in each 
SDLC. 
 
The OO and structured paradigms are both ways of analyzing, thinking about and designing systems, and each 
has its own set of modelling methods, documentation styles, requirements representation and design 
approaches.  The underlying ideas of each of these are examined to provide students with both an ability to 
choose the approach that is most appropriate for new projects, and to understand how to work with 
modernization of legacy systems.  However the bulk of the material presented is based on the object oriented 
paradigm and Agile processes. 
 
All of the theory presented is reinforced with examples, real world case studies, hands on exercises and 
projects. 
 
Topics 
 

 The three major SDLCs in systems development: Waterfall, Iterative and Agile. 

 Adaptive versus predictive projects 

 Object oriented concepts and design approaches 

 Structured analysis and design overview 

 Using UML to model OO designs 

 Agile process implementations: SCRUM, XP, Kaban, Crystal, DSDM and others 

 Project Management for Agile versus traditional projects 

 Implementing the standard engineering process in different SDLCs 

 Risk analysis models for different SDLC choices 

 Project Management for Agile versus traditional projects 

 Requirements techniques and documentation 

 Domain and business process modelling and business process improvement 

 Data requirements, analysis and design 

 Design architectures 

 Quality assurance practices and techniques for systems design 

 Current best practices and standards 

 Automation tools for systems development 



 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Systems Analysis and Design 
 

Course Summary (cont’d) 
 
Audience 
 
The course is appropriate for project managers, developers, architects, business and systems analysts, data 
modelers and anyone else who is involved in the planning, design and building of software systems. 
 
Prerequisites 
 
The course has no prerequisites other than a general understanding of information technology. 
 
Duration 
 
Five days 



 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Systems Analysis and Design 
 

Course Outline 
 

I. Introduction to Modern Systems 
A. Mission critical software 
B. Industrial strength software and 

complexity 
C. Costs of software failures 
D. Root causes of project failures 
E. What we have learned: best practices 

and anti-patterns 
 

II. The Engineering Process 
A. The basic engineering process 

defined 
B. The difference between programming 

and software engineering: the iron 
triangle 

C. Requirements: problem definition and 
scope 

D. Analysis: specification of potential 
solutions 

E. Design: planning the solution with 
available resources 

F. Construction: software project 
management 

G. Deployment: field support and change 
management 

H. Retirement: transitioning to 
replacement systems 
 

III. Process and SDLC Types 
A. Adaptive versus Predictive SDLCs 
B. Predictive SDLCs: The Waterfall 
C. Adaptive SDLCs: Agile and Spiral 
D. Mixed SDLCs: Iterative (RUP like) 
E. Strengths and weaknesses of each 

SDLC 
F. Criteria for choosing an SDLC 
G. Best practices and anti-patterns 

 
IV. Process maturity demystified 

A. What process maturity is 
B. The SEI CMM levels explained 
C. What CMM really describes in the real 

world 
D. The path to process maturity 

 

V. Development Paradigms 
A. Ways of analyzing and designing 

systems 
B. The structured approach – basic 

concepts and methods 
C. The object oriented approach – basic 

concepts and methods 
D. Strengths and weakness of each 

paradigm 
E. Criteria for choosing a specific 

paradigm 
F. Using each paradigm with each 

process type 
G. Cost-benefit analysis for choosing a 

paradigm and process type 
 

VI. The Structured Paradigm 
A. The kinds of problems it solves 
B. How it was used to build our legacy 

systems 
C. Basic modelling activities and 

documentation 
D. Data flow diagrams and flow charts 
E. Entity-relationship models 

 
VII. The Object Oriented Paradigm 

A. The principle of iconicity 
B. Interface and implementation 
C. The principle of recursive design 
D. The object model 
E. The six basic axioms of OO design 

 
VIII. Models, Views and Architectures 

A. Modelling as quantitative activity 
B. Fundamental properties of models 
C. Modelling best practices 
D. Developing orthogonal model sets 
E. Architectures as organization of 

models 
F. Current architectures in common use 

 
IX. Using UML for OO models 

A. The basic diagrams and their use 
B. How the diagrams fit into the SDLC 
C. Diagrams as views into the 

architectural design 



 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Systems Analysis and Design 
 

Course Outline (cont’d) 
 

D. Modelling “just enough” with UML 
E. UML best practices and anti-patterns 

 
X. Software Systems Project Preliminaries 

A. Deciding on an SDLC 
B. Deciding on a design approach 
C. Establishing project scope 
D. Definition of the problem to be solved 
E. Establishing a quality baseline 
F. Infrastructure choices: tool sets, 

configuration management and 
portfolio analysis 
 

XI. Structured Project Design 
A. Defining and modelling the data 
B. Identifying the business or domain 

processes 
C. Decomposition of the problem 
D. Modelling the business logic with flow 

charts 
E. Modelling the data flow with DFDs 
F. Modelling “data in motion” with 

relational models 
 

XII. Agile Project Methodologies 
A. SCRUM and its variants 
B. Extreme Programming 
C. Crystal 
D. Dynamic Systems Development 

Method (DSDM) 
E. Other Agile approaches 
F. The Agile Manifesto and Software 

Craftsmanship 
 

XIII. OO Requirements I 
A. Functional versus Nonfunctional 

requirements 
B. Requirements engineering models for 

nonfunctional requirements 
C. Functional requirements as user 

stories and use cases 
D. Discovering and documenting user 

requirements 
E. Problems and issues in requirements 

elicitation 
F. Requirements elicitation methods  

XIV. OO Requirements II 
A. Domain Driven Design – creating a 

domain model 
B. Modelling the domain objects and 

their structure 
C. Modelling the domain processes 
D. Iterative model development and 

knowledge crunching 
E. Collaborative process reengineering 

and redesign during the domain 
modelling process 
 

XV. OO Requirements III 
A. Creating acceptance tests for 

functional requirements 
B. Requirements robustness analysis 
C. Stakeholder analysis and reviews 
D. Collaborative methods (e.g. 

Acceptance Test Driven 
Development) 

E. Developing data requirements from 
the domain model 

F. Unified statement of requirements 15. 
OO Analysis I 

G. Developing an Agile specification 
H. Specification reviews and IEEE 

standards (complete, correct, etc.) 
I. Acceptance tests and UML diagrams 

as specification documentation 
J. Early Usability mocks  

 
XVI. OO Analysis II 

A. Developing an functional architecture 
B. Describing the functional architecture 

with UML class, communication and 
other diagrams 

C. Robustness analysis for the 
architecture 

D. Modularization and subsystem 
definition 
 

XVII. OO Design I 
A. Choosing a software architecture (i.e. 

Programming environment, 
frameworks, micro-services or web 
services etc.) 



 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Systems Analysis and Design 
 

Course Outline (cont’d) 
 

B. Developing a physical architecture 
C. Documenting high level design with 

UML (deployment diagram etc.). 
D. Defining interfaces for subsystems 

 
XVIII. OO Design II 

A. Developing design classes 
B. Modelling design class interfaces 

(SOLID principles) 
C. Modelling the design classes and their 

interactions with class and sequence 
diagrams 

D. Concurrency and designing for 
nonfunctional requirements  
 

XIX. OO Design III 
A. Understanding Design Patterns 
B. Refactoring to Design Patterns  

 
XX. OO Construction I 

A. Project Management under different 
Agile methodologies 

B. Test Driven Development 
C. Clean code and software reviews 
D. Continuous integration 
E. Code base maintenance best 

practices  
 

XXI. OO Construction II Automated Tools 
A. Build environments 
B. Continuous integration and testing 
C. Configuration management tools 
D. Code analyzers 

 
XXII. Data Design 

A. The logical data model – defined data 
structure 

B. Relational models – data in use 
C. Dimensional models – data under 

analysis 
D. Data management and security 
E. Data archiving and retention  

 
XXIII. Production Support 

A. Release management 
B. Change management best practices 
C. Regression testing 
D. Beta and acceptance testing 

 
XXIV. Summary 

A. Review of the course 
B. How to move forward and apply what 

has been learned 
C. Other topics requested by students 
D. Assessment of knowledge and skills 

gained 


