DB2 SQL

Course Summary

Description

In this course, students will learn the DB2 SQL starting at the most basic level and going to the most advanced level with many examples.

Objectives

By the end of this course, students will have a deeper knowledge and understanding of the DB2 SQL and how to write it.

Topics

- Basic SQL Functions
- The WHERE Clause
- Distinct Vs. Group By
- Aggregation Function
- Join Functions
- Date Functions
- OLAP Functions
- Temporary Tables

- Sub-query Functions
- Strings
- Interrogating the Data
- View Functions
- Set Operators
- Data Manipulation Language (DML)
- Statistical Aggregate Functions

Audience

This course is designed for anyone who has a desire to learn DB2 SQL from beginners to an advanced audience. This course is completely customizable by the client.

Prerequisites

There are no prerequisites for this course.

Duration

Two to three days

DB2 SQL

Course Outline

I.	I he I	Basics of SQL	C.	Character Data needs Single
	A.	Introduction		Quotes in the WHERE Clause
	B.	Finding Your Current Schema	D.	Character Data needs Single
	C.	Setting Your Default SCHEMA		Quotes, but Numbers Don't
	D.	SELECT * (All Columns) in a	E.	Comparisons against a Null Value
		Table	F.	NULL means UNKNOWN DATA
	E.	SELECT Specific Columns in a	• •	so Equal (=) won't Work
	∟.	Table	G.	Use IS NULL or IS NOT NULL
	F.		О.	
		Commas in the Front or Back?		when dealing with NULLs
	G.	Place your Commas in front for	H.	NULL is UNKNOWN DATA so
		better Debugging Capabilities		NOT Equal won't Work
	H.	Sort the Data with the ORDER BY	I.	Use IS NULL or IS NOT NULL
		Keyword		when dealing with NULLs
	I.	ORDER BY Defaults to	J.	Using Greater Than or Equal To
		Ascending		(>=)
	J.	Use the Name or the Number in	K.	AND in the WHERE Clause
		your ORDER BY Statement	L.	Troubleshooting AND
	K.	Two Examples of ORDER BY	M.	OR in the WHERE Clause
		using Different Techniques	N.	Troubleshooting Or
	L.	Changing the ORDER BY to	Ο.	Troubleshooting Character Data
		Descending Order	P.	Using Different Columns in an
	M.	NULL Values sort First in		AND Statement
		Ascending Mode (Default)	Q.	Quiz – How many rows will
	N.	NULL Values sort First in	۵.	return?
	14.	Descending Mode (DESC)	R.	Answer to Quiz – How many rows
	Ο.	Major Sort vs. Minor Sorts	IX.	will return?
	О. Р.		S.	What is the Order of Precedence?
	г.	Multiple Sort Keys using Names vs. Numbers	З. Т.	
	_		1.	Using Parentheses to change the
	Q.	Sorts are Alphabetical, NOT		Order of Precedence
	_	Logical	U.	Using an IN List in place of OR
	R.	Using A CASE Statement to Sort	V.	The IN List is an Excellent
		Logically		Technique
	S.	How to ALIAS a Column Name	W.	IN List vs. OR brings the same
	T.	A Missing Comma can by Mistake		Results
		become an Alias	X.	The IN List Can Use Character
	U.	Comments using Double Dashes		Data
		are Single Line Comments	Y.	Using a NOT IN List
	V.	Comments for Multi-Lines	Z.	Null Values in a NOT IN List Bring
	W.	Comments for Multi-Lines as		Back No Rows
		Double Dashes per Line	AA.	A Technique for Handling Nulls
	X.	Formatting Number Examples	, , , ,	with a NOT IN List
	Y.	Formatting Date Example	BB.	BETWEEN is Inclusive
	١.	1 officialing Date Example	CC.	NOT BETWEEN is Also Inclusive
II.	The V	WHERE Clause	DD.	LIKE uses Wildcards Percent '%'
11.		The WHERE Clause limits	DD.	and Underscore ' '
	A.		FF	<u>–</u>
	Р	Returning Rows	EE.	LIKE command Underscore is
	B.	Double Quoted Aliases are for		Wildcard for one Character
		Reserved Words and Spaces	FF.	LIKE Command Works Differently
				on Char Vs Varchar

III.

... to Your Success!"

DB2 SQL

GG.	LIKE Command on Character		K.	GROUP BY Dept_No Works
HH.	Data Auto Trims Quiz – What Data is Left Justified		L.	GROUP BY 1 Fails Limiting Rows and Improving
	and what is Right?			Performance with WHERE
II.	Numbers are Right Justified and		M.	WHERE Clause in Aggregation
	Character Data is Left			limits unneeded Calculations
JJ.	Answer – What Data is Left		N.	Keyword HAVING tests
	Justified and what is Right?			Aggregates after they are totaled
KK.	An Example of Data with Left and		Ο.	Keyword HAVING is like an Extra
	Right Justification			WHERE Clause for Totals
LL.	A Visual of CHARACTER Data		P.	Keyword HAVING tests
	vs. VARCHAR Data		_	Aggregates after they are totaled
MM.	Use the TRIM command to		Q.	Getting the Average Values per
	remove spaces on CHAR Data		5	Column
NN.	Escape Character in the LIKE		R.	Average Values per Column for
00	Command changes Wildcards		C	all Columns in a Table
00.	Escape Characters Turn off		S.	GROUP BY GROUPING SETS
PP.	Wildcards in the LIKE Command Quiz – Turn off that Wildcard		T.	Command GROUP BY Grouping Sets
QQ.	ANSWER – To Find that Wildcard		U.	GROUP BY ROLLUP Command
RR.	The Distinct Command		V.	GROUP BY Rollup Result Set
SS.	Distinct vs. GROUP BY		W.	GROUP BY CUBE Command
TT.	Quiz – How many rows come		X.	GROUP BY CUBE Result Set
	back from the Distinct?		Υ.	Quiz - GROUP BY GROUPING
UU.	Answer – How many rows come			SETS Challenge
	back from the Distinct?		Z.	Answer To Quiz - GROUP BY
VV.	The FETCH Clause			GROUPING SETS Challenge
WW.	The FETCH Clause with an			· ·
	ORDER BY Clause	IV.	Join F	unctions
			A.	A Two-Table Join Using
Aggreg				Traditional Syntax
A.	Quiz – You calculate the Answer		B.	A two-table join using Non-ANSI
_	Set in your own Mind		•	Syntax with Table Alias
B.	Answer – You calculate the		C.	You Can Fully Qualify All
^	Answer Set in your own Mind		Б.	Columns
C.	Quiz – You calculate the Answer		D.	A two-table join using ANSI
Ь	Set in your own Mind Answer – You calculate the		E.	Syntax
D.	Answer Set in your own Mind		⊏.	Both Queries have the same Results and Performance
E.	The 3 Rules of Aggregation		F.	Quiz – Can You Finish the Join
F.	There are Five Aggregation There are Five Aggregates		١.	Syntax?
G.	Quiz – How many rows come		G.	Answer to Quiz – Can You Finish
O .	back?		0.	the Join Syntax?
H.	Answer – How many rows come		H.	Quiz – Can You Find the Error?
	back?		i.	Answer to Quiz – Can You Find
l.	Troubleshooting Aggregates			the Error?
J.	GROUP BY delivers one row per		J.	Super Quiz – Can You Find the
	Group			Difficult Error?

DB2 SQL

K.	Answer to Super Quiz – Can You		NN.	Quiz – Will both queries bring
	Find the Difficult Error?			back the same Answer Set?
L.	Quiz – Which rows from both		00.	Answer – Will both queries bring
	tables won't return?			back the same Answer Set?
M.	Answer to Quiz – Which rows		PP.	Quiz – Will both queries bring
	from both tables Won't Return?			back the same Answer Set?
N.	LEFT OUTER JOIN		QQ.	Answer – Will both queries bring
Ο.	LEFT OUTER JOIN Results			back the same Answer Set?
Ρ.	RIGHT OUTER JOIN		RR.	How would you join these two
Q.	RIGHT OUTER JOIN Example			tables?
	and Results		SS.	An Associative Table is a Bridge
R.	FULL OUTER JOIN			that Joins Two Tables
S.	FULL OUTER JOIN Results		TT.	Quiz – Can you write the 3-Table
T.	Which Tables are the Left and			Join?
	which Tables are Right?		UU.	Answer to quiz – Can you write
U.	Answer - Which Tables are the			the 3-Table Join?
	Left and which are the Right?		VV.	Quiz – Can you write the 3-Table
V.	INNER JOIN with Additional AND			Join to ANSI Syntax?
	Clause		WW.	Answer – Can you write the 3-
W.	ANSI INNER JOIN with Additional			Table Join to ANSI Syntax?
	AND Clause		XX.	Quiz – Can you Place the ON
X.	ANSI INNER JOIN with Additional			Clauses at the End?
	WHERE Clause		YY.	Answer - Can you Place the ON
Y.	OUTER JOIN with Additional			Clauses at the End?
	WHERE Clause		ZZ.	The 5-Table Join – Logical
Z.	OUTER JOIN with Additional			Insurance Model
	AND Clause		AAA.	Quiz - Write a Five Table Join
AA.	OUTER JOIN with Additional			Using ANSI Syntax
	AND Clause Results		BBB.	Answer - Write a Five Table Join
BB.	Quiz – Why is this considered an			Using ANSI Syntax
	INNER JOÍN?		CCC.	Quiz - Write a Five Table Join
CC.	Evaluation Order for Outer			Using Non-ANSI Syntax
	Queries		DDD.	Answer - Write a Five Table Join
DD.	The DREADED Product Join			Using Non-ANSI Syntax
EE.	The DREADED Product Join		EEE.	Quiz –Re-Write this putting the
	Results			ON clauses at the END
FF.	The Horrifying Cartesian product		FFF.	Answer –Re-Write this putting the
	join			ON clauses at the END
GG.	The ANSI Cartesian Join will		GGG.	The Nexus Query Chameleon
	ERROR			Writes the SQL for Users
HH.	Quiz – Do these Joins Return the			
	Same Answer Set?	٧.	Usina	Nexus for DB2
II.	Answer – Do these Joins Return		Α.	Nexus is Available on the Cloud
	the Same Answer Set?		В.	Nexus Queries Every Major
JJ.	The CROSS JOIN			System
KK.	The CROSS JOIN Answer Set		C.	How to Use Nexus
LL.	The Self Join		D.	Why is Nexus Special?
MM.	The Self Join with ANSI Syntax		υ.	Visualization and Automatic SQL
	Jon John Man / Milor Oymax			

DB2 SQL

E.	Why is Nexus Special? Cross-	FF.	The Tabs of the Super Join
	System Joins		Builder Philosophy – One Query
F.	Why is Nexus Special? The	GG.	The Tabs of the Super Join
	Amazing Hub System		Builder – Objects Tab
G.	Why is Nexus Special? Save	HH.	The Tabs of the Super Join
	Answer Sets as Tables		Builder - Columns Tab)
H.	Why is Nexus Special?	II.	The Tabs of the Super Join
	Automated Data Movement		Builder – Sorting Tab
I.	Why is Nexus Special? Nexus	JJ.	The Tabs of the Super Join
	makes the Servers Talk Directly		Builder – Joins Tab
J.	What Makes Nexus Special? The	KK.	The Tabs of the Super Join
	Garden of Analysis		Builder – SQL Tab
K.	The Garden of Analysis Grouping	LL.	The Tabs of the Super Join
	Sets Tab		Builder – Metadata Tab
L.	The Garden of Analysis -	MM.	The Tabs of the Super Join
	Grouping Sets Answer Sets		Builder – Analytics Tab
M.	The Garden of Analysis – Join	NN.	The Tabs of the SJB – Analytics
	Tab		Tab - OLAP Screen
N.	The Garden of Analysis –	00.	Getting a Simple CSUM in the
	Charts/Graphs Tab		Analytics Tab – OLAP
Ο.	The Garden of Analysis –	PP.	Getting a Simple CSUM - The
	Dynamic Charts Tab		SQL Automatically Generated
P.	The Garden of Analysis –	QQ.	The Answer Set of the CSUM
	Dashboard Tab	RR.	Getting all of the OLAP functions
Q.	Getting to the Super Join Builder		in the Analytics Tab
R.	The Super Join Builder is the First	SS.	A Five Table Join Using the Menu
	Entry in the Menu	TT.	The First Table is placed in the
S.	The Super Join Builder Shows		Super Join Builder
_	Tables Visually	UU.	Using the Add Join Cascading
T.	Using the Add Join Button		Menu
U.	What to Do When No Tables are	VV.	All Five Tables Are In the Super
	Joinable?		Join Builder
V.	Drag a Joinable Object into the	WW.	A Five Table Join Two Steps
	Super Join Builder		(Cube)
W.	You will see the Add Custom Join	XX.	Choose Cube with Columns from
	Window		the Left Top of the Table
X.	Defining the Join Columns	YY.	All Tables are Cubed (Joined
Y.	Your Tables Will Appear Together		Together Instantly)
Z.	Select the Columns You Want on	ZZ.	Choose Cube and then Choose
	the Report		Your Columns
AA.	Check out the SQL Tab to See	AAA.	Create Cube - Tables Are Joined
	the SQL that has been built		Without Columns Selected
BB.	SQL Tab	BBB.	Create Cube - Select the
CC.	Hit Execute to get the Report		Columns You Want on the Report
	inside the Super Join Builder	CCC.	How to join DB2, Oracle and SQL
DD.	The Report is delivered inside the		Server Tables
	Super Join Builder	DDD.	The DB2 Table is now in the
FF	Let's Join Two Tables Again		Super Join Builder

VI.

... to Your Success!"

DB2 SQL

EEE.	Drag the Joining Oracle Table to the Super Join Builder		P.	Finding Orders That Happened on a Friday
FFF.	Defining the Join Columns		Q.	NEXT_DAY Command Finds a
GGG.	Choose the Columns You Want		Q.	Future Day of the Week
GGG.			D	
111111	on Your Report		R.	Finding the Last Day of a Month
HHH.	Let's Add a SQL Server Table to		S.	Finding the Last Day of the
	our DB2 and Oracle Join		_	Previous Month
III.	Defining the Join Columns		Τ.	Getting the First Day of the Month
JJJ.	All Three Tables are now in the		U.	Finding the Number of Days
	Super Join Builder			between Two Dates
KKK.	Change the Hub and Run the Join		V.	Resetting the Microseconds Back
	on Oracle			to Zero
LLL.	Change the Hub and Run the Join		W.	Turning Date and Time into
	on SQL Server			Characters
MMM.	Simply Amazing - Change the		Χ.	Converting Character Data to a
	Hub to the Garden of Analysis			Timestamp
NNN.	Have the Answer Set Saved		Υ.	Finding Differences between
	Automatically to Any System			Timestamps
000.	Saving the Answer Set to an		Z.	Differences between Timestamps
	Oracle or SQL Server System			Fractions of a Second
PPP.	Saving the Answer Set to a DB2		AA.	Find Differences between
	System			Timestamp Seconds and Minutes
QQQ.	Saving the Answer Set to a		BB.	Find Differences between
	Teradata System			Timestamp Hours and Days
	•		CC.	Find Differences between
Date F	unctions			Timestamp Weeks and Months
A.	Getting the System Date		DD.	Find Differences between
B.	Extracting From a Timestamp			Timestamp Quarters and Years
C.	The EXTRACT Command		EE.	Formatting Dates
D.	Using the EXTRACT Command		FF.	Formatting Dates Example
	to Extract Month, Day, Year		GG.	Formatting Timestamp Example
E.	Extracting From a Date Column		.	r officialing rimodianip Example
F.	Extracting the Date and Time	VII.	ΟΙ ΔΡ	Functions
	from the Timestamp	V	A.	The Row_Number Command
G.	Formatting Dates Example		л. В.	Quiz – How did the Row_Number
О. Н.	Formatting Date Standards		ъ.	Reset?
l.	Adding and Subtracting Days		C.	Using a Derived Table and
1.	from a Date		О.	Row_Number
J.	Adding Years, Months, Days,		D.	Ordered Analytics OVER
J.	-		E.	RANK and DENSE RANK
K.	Hours and Seconds		F.	
	Using the Add_Months Command		Г.	RANK Defaults to Ascending
L.	Adding Years to a Date		0	Order
M.	Add Five Years to a Date		G.	Getting RANK to Sort in DESC
N.	Converting Character Data to a			Order
_	Date or Time		H.	RANK OVER and PARTITION BY
Ο.	Timestamp DAYOFWEEK,		l.	Finding Gaps between Dates
	DAYNAME and MONTHNAME		J.	CSUM – Rows Unbounded
				Preceding Explained

DB2 SQL

Course Outline (cont'd)

K.	CSUM – Making Sense of the Data		KK.	MAX OVER with PARTITION BY Reset
L.	CSUM – Making Even More		LL.	MAX OVER without Rows
	Sense of the Data			Unbounded Preceding
M.	CSUM – The Major and Minor		MM.	The MIN OVER Command
	Sort Key(s)		NN.	MIN OVER without Rows
N.	The ANSI CSUM – Getting a			Unbounded Preceding
	Sequential Number		00.	MIN OVER Using PARTITION BY
Ο.	Reset with a PARTITION BY			to Reset
•	Statement		PP.	Finding a Value of a Column in
P.	PARTITION BY only Resets a			the Next Row with MIN
	Single OLAP not ALL of them		QQ.	The CSUM for Each Product_Id
Q.	CURRENT ROW AND			and the Next Start Date
	UNBOUNDED FOLLOWING		RR.	Quiz – Fill in the Blank
R.	Different Windowing Options		SS.	Answer – Fill in the Blank
S.	Moving Sum has a Moving		TT.	Using FIRST_VALUE
	Window		UU.	FIRST_VALUE
T.	How ANSI Moving SUM Handles		VV.	FIRST_VALUE after Sorting by
	the Sort			the Highest Value
U.	Quiz – How is that Total		WW.	FIRST_VALUE with Partitioning
	Calculated?		XX.	FIRST_VALUE Combined with
V.	Answer to Quiz – How is that			Row_Number
	Total Calculated?		YY.	FIRST_VALUE and Row_Number
W.	Moving SUM every 3-rows Vs a			with Different Sort
	Continuous Average		ZZ.	Using LAST_VALUE
X.	PARTITION BY Resets an ANSI		AAA.	LAST_VALUE
	OLAP		BBB.	Using LAG and LEAD
Y.	The Moving Window is Current		CCC.	LEAD
	Row and Preceding		DDD.	LEAD
Z.	Moving Average		EEE.	LEAD With Partitioning
AA.	Moving Average Using a CAST		FFF.	LEAD to Find the First
	Statement			Occurrence
BB.	Moving Average every 3-rows Vs		GGG.	Using LEAD
	a Continuous Average		HHH.	Using LEAD with an Offset of 2
CC.	PARTITION BY Resets an ANSI		III.	Using LAG
	OLAP		JJJ.	Using LAG with an Offset of 2
DD.	Moving Difference		KKK.	LAG
EE.	Moving Difference using ANSI		LLL.	LAG with Partitioning
	Syntax with Partition By		MMM.	SUM (SUM (n))
FF.	COUNT OVER for a Sequential			
	Number	VIII.		rary Tables
GG.	COUNT OVER without Rows		A.	There are two types of Temporary
	Unbounded Preceding			Tables
HH.	Quiz – What caused the COUNT		B.	CREATING A Derived Table
	OVER to Reset?		C.	Creating Multiple Derived Tables
II.	Answer to Quiz – What caused		_	in the WITH Command
	the COUNT OVER to Reset?		D.	Creating Multiple Derived Tables
JJ.	The MAX OVER Command			in the WITH Command

DB2 SQL

E.	The Same Derived Query shown Three Different Ways		DD.	Temporary Table
F.	Most Derived Tables Are Used To		EE.	Creating a Global Temporary
	Join To Other Tables			Table Using a CTAS
G.	The Three Components of a		FF.	Creating a Global Temporary
	Derived Table			Table Using a CTAS Join
H.	Visualize This Derived Table		GG.	A Global Temp Table That
l.	Our Join Example with A Different			Populates Some of the Rows
_	Column Aliasing Style		HH.	A Temporary Table with Some of
J.	Column Aliasing Can Default For			the Columns
IZ.	Normal Columns	IV	Cul. a	
K.	Our Join Example With the WITH	IX.		uery Functions
	Syntax		A.	An IN List is much like a
L. M.	Quiz - Answer the Questions Answer to Quiz - Answer the		В.	Subquery An IN List Never has Duplicates –
IVI.	Questions		Ь.	Just like a Subquery
N.	Clever Tricks on Aliasing		C.	The Subquery
IN.	Columns in a Derived Table		D.	The Subquery The Three Steps of How a Basic
Ο.	An Example of Two Derived		υ.	Subquery Works
O .	Tables in a Single Query		E.	These are Equivalent Queries
P.	Example of Two Derived Tables		F.	The Final Answer Set from the
•	in a Single WITH Statement			Subquery
Q.	WITH RECURSIVE Derived		G.	Quiz- Answer the Difficult
	Table Hierarchy			Question
R.	WITH RECURŚIVE Derived		H.	Answer to Quiz- Answer the
	Table Query			Difficult Question
S.	WITH RECURSIVE Derived		I.	Should you use a Subquery or a
	Table Definition			Join?
T.	WITH RECURSIVE Derived		J.	Quiz- Write the Subquery
	Table Seeding		K.	Answer to Quiz- Write the
U.	WITH RECURSIVE Derived			Subquery
	Table Looping		L.	Quiz- Write the More Difficult
V.	WITH RECURSIVE Derived			Subquery
	Table Looping in Slow Motion		M.	Answer to Quiz- Write the More
W.	WITH RECURSIVE Derived		N.I.	Difficult Subquery
V	Table Looping Continued		N.	Quiz – Write the Extreme
X.	WITH RECURSIVE Derived		0	Subquery Answer to Quiz- Write the
Y.	Table Ends the Looping WITH RECURSIVE Derived		Ο.	Extreme Subquery
Ι.	Table Definition		P.	Quiz- Write the Subquery with an
Z.	WITH RECURSIVE Final Answer		١.	Aggregate
۷.	Set		Q.	Answer to Quiz- Write the
AA.	Creating and Populating a Global		Q.	Subquery with an Aggregate
<i>,</i> , , ,	Temporary Table		R.	Quiz- Write the Correlated
BB.	Global Temporary Table			Subquery
	Definitions Persist		S.	Answer to Quiz- Write the
CC.	ON COMMIT DELETE ROWS			Correlated Subquery
	Example			, ,

DB2 SQL

T.	The Basics of a Correlated Subquery		TT.	How a Correlated Exists matches up
U.	The Top Query always runs first		UU.	The Correlated NOT Exists
.,	in a Correlated Subquery	v	Ctulus au	_
V.	Correlated Subquery Example vs.	Χ.	String	
	a Join with a Derived Table		A.	The LENGTH Command Counts
W.	Quiz- A Second Chance to Write		_	Characters
	a Correlated Subquery		B.	The LENGTH Command –
X.	Answer - A Second Chance to		_	Spaces can Count too
	Write a Correlated Subquery		C.	The LENGTH Command and
Υ.	Quiz- A Third Chance to Write a			Character Data
	Correlated Subquery		D.	The LENGTH Needs a TRIM
Z.	Answer - A Third Chance to Write		E.	The TRIM Command trims both
	a Correlated Subquery			Leading and Trailing Spaces
AA.	Quiz- Last Chance to Write a		F.	A Visual of the TRIM Command
	Correlated Subquery			Using Concatenation
BB.	Answer – Last Chance to Write a		G.	Trim and Trailing is Case
	Correlated Subquery			Sensitive
CC.	Quiz – Write the Extreme		H.	How to TRIM Trailing Letters
• • • • • • • • • • • • • • • • • • • •	Correlated Subquery		i.	The SUBSTRING Command
DD.	Answer To Quiz – Write the		 J.	How SUBSTRING Works with NO
<i>D</i> D.	Extreme Correlated Subquery		0.	ENDING POSITION
EE.	Quiz- Write the NOT Subquery		K.	An Example using SUBSTRING,
FF.	Answer to Quiz- Write the NOT		IV.	TRIM and CHAR Together
	Subquery		L.	Concatenation
GG.	Quiz- Write the Subquery using a		L. M.	Concatenation and SUBSTRING
GG.	WHERE Clause		N.	
шш			Ν. Ο.	Four Concatenations Together
HH.	Answer - Write the Subquery		О. Р.	UPPER and LOWER Commands
	using a WHERE Clause			LPAD and RPAD
II.	Quiz- Write the Subquery with Two Parameters		Q.	SOUNDEX
JJ.	Answer to Quiz- Write the	XI.	Interro	gating the Data
	Subquery with Two Parameters		A.	Using the LOWER Command
KK.	How the Double Parameter		B.	Using the UPPER Command
	Subquery Works		C.	Non-Letters are Unaffected by
LL.	More on how the Double			UPPER and LOWER
	Parameter Subquery Works		D.	Quiz – Fill in the Answers for the
MM.	Quiz – Write the Triple Subquery		٥.	NULLIF Command
NN.	Answer to Quiz – Write the Triple		E.	The COALESCE Command
1414.	Subquery		F.	The COALESCE Answer Set
00.	Quiz – How many rows return on		G.	The COALESCE Command – Fill
00.	a NOT IN with a NULL?		О.	In the Answers
PP.			H.	The COALESCE Answer Set
PP.	Answer – How many rows return on a NOT IN with a NULL?		п. I.	
00			ı.	COALESCE is Equivalent to This
QQ.	How to handle a NOT IN with			CASE Statement
DD	potential NULL Values		J.	The Basics of CAST (Convert and
RR.	IN is equivalent to =ANY		IZ.	Store)
SS.	Using a Correlated Exists		K.	Some Great CAST (Convert and Store) Examples

XII.

... to Your Success!"

DB2 SQL

Course Outline (cont'd)

L.	A Rounding Example		M.	What Happens When Both
M.	Quiz - The Basics of the CASE			Aliasing Options Are Present
	Statements		N.	Resolving Aliasing Problems in a
N.	Answer to Quiz - The Basics of			View CREATE
	the CASE Statements		Ο.	Answer to Resolving Aliasing
Ο.	Using an ELSE in the Case			Problems in a View CREATE
	Statement		P.	Creating a View with a Local
P.	Using an ELSE as a Safety Net			Check
Q.	Rules for a Valued Case		Q.	Aggregates on View Aggregates
	Statement		R.	Altering a Table after a View Has
R.	Rules for a Searched Case			Been Created
	Statement		S.	A View that Errors after an
S.	Valued Case Vs. A Searched			ALTER
	Case			
T.	Quiz - Valued Case Statement	XIII.	Set C	Operators Functions
U.	Answer - Valued Case Statement		Α.	Rules of Set Operators
V.	Quiz - Searched Case Statement		В.	INTERSECT Explained Logically
W.	Answer - Searched Case		C.	UNION Explained Logically
• • • •	Statement		D.	UNION ALL Explained Logically
X.	The CASE Challenge		E.	EXCEPT Explained Logically
Υ.	The CASE Challenge Answer		F.	Minus Explained Logically
Z.	Combining Searched Case and		G.	An Equal Amount of Columns in
- -	Valued Case		О.	both SELECT List
AA.	A Trick for getting a Horizontal		Н.	Columns in the SELECT list
704	Case		• • •	should be from the same Domain
BB.	Nested Case		l.	The Top Query handles all
CC.	Put a CASE in the ORDER BY			Aliases
00.	Tata of the in the order of		J.	The Bottom Query does the
View	Functions		٥.	ORDER BY
Α.	The Fundamentals of Views		K.	Great Trick: Place your Set
В.	Creating a Simple View to			Operator in a Derived Table
٥.	Restrict Sensitive Columns		L.	UNION Vs UNION ALL
C.	You SELECT From a View		<u>.</u> М.	A Great Example of how MINUS
D.	Creating a Simple View to		141.	works
О.	Restrict Rows		N.	USING Multiple SET Operators in
E.	A View Provides Security for		IN.	a Single Request
L.	Columns and Rows		Ο.	Changing the Order of
F.	Basic Rules for Views		О.	Precedence with Parentheses
G.	How to Modify a View		P.	Using UNION ALL for speed in
О. Н.	An Exception to the ORDER BY			Merging Data Sets
11.	Rule inside a View			Weiging Data Octs
I.	Views Are Sometimes CREATED	XIV.	Table	e Create and Data Types
1.	for Formatting	AIV.	A.	The Basics of Creating a Table
J.	Creating a View to Join Tables		А. В.	Creating a Table with NOT NULL
J.	Together		Ъ.	Constraints
K.	How to Alias Columns in a View		C.	
IX.	CREATE		O.	Creating a Table with a UNIQUE Constraint
L.	The Standard Way Most Aliasing		D.	Constraint Creating a Unique Index
∟.	is done		E.	Creating a Offique findex Creating a Clustered Index
	IS GOLIC			ordaning a olasierea maex

XV.

H.

I.

Two UPDATE Examples Subquery UPDATE Command

Syntax

... to Your Success!"

DB2 SQL

F.	Creating a Partitioned Table for a Range on a Date Column		J.	Example of Subquery UPDATE Command
G.	Creating a Partitioned Table for a		K.	The DELETE Command Basic
O .	Number		IX.	Syntax
H.	Declaring a Global Temporary		L.	Example of Subquery DELETE
• • •	Table			Command
I.	Declaring a Global Temporary		M.	Example of Subquery DELETE
	Table that Persists Using Like			That Gets Rid of Null Values
J.	Creating a Table with an XML			
	Data Type	XVI.	Statis	tical Aggregate Functions
K.	Creating a Table with a CHECK		A.	Numeric Manipulation Functions
	Constraint		B.	The Stats Table
L.	Creating a Table with Default		C.	The VARIANCE Function
	Values		D.	A VARIANCE Example
M.	Creating a Table with Multiple		E.	The CORR Function
	Constraints		F.	A CORR Example
N.	Defining Primary Keys		G.	Another CORR Example so you
Ο.	Defining a Primary Key after the			can compare
	Table Has Been Created		H.	The REGR_INTERCEPT
P.	Defining a Foreign Key after the			Function
	Table Has Been Created		I.	A REGR_INTERCEPT Example
Q.	Creating a Table with an Identity		J.	Another REGR_INTERCEPT
	Column that is Unique			Example so you can compare
R.	Creating a Table with an Identity		K.	The REGR_SLOPE Function
	Column that is Non-Unique		L.	A REGR_SLOPE Example
S.	Creating a Sequence		M.	Another REGR_SLOPE Example
T.	Altering a Table to Add a Column			so you can compare
U.	Altering a Table to Drop a Column		N.	The REGR_AVGX Function
V.	Renaming a Table		Ο.	A REGR_AVGX Example
W.	Dropping a Table		P.	Another REGR_AVGX Example
X.	Creating a Table Using a CTAS		_	so you can compare
	or a LIKE		Q.	The REGR_AVGY Function
Y.	Creating a Table Using a CTAS		R.	A REGR_AVGY Example
_	Join		S.	Another REGR_AVGY Example
Z.	Data Types		_	so you can compare
			Т.	The REGR_COUNT Function
	Manipulation Language (DML)		U.	A REGR_COUNT Example
Α.	INSERT Syntax # 1		٧.	The REGR_R2 Function
B.	INSERT example with Syntax 1		W.	A REGR_R2 Example
C.	INSERT Syntax # 2		Χ.	The REGR_SXX Function
D.	INSERT example with Syntax 2		<u>Y</u> .	A REGR_SXX Example
Ε.	INSERT/SELECT Command		Z.	The REGR_SXY Function
F.	INSERT/SELECT example using		AA.	A REGR_SXY Example
_	All Columns (*)		BB.	The REGR_SYY Function
G.	INSERT/SELECT example with		CC.	A REGR_SYY Example
	Less Columns			