

Oracle SQL

Course Summary

Description

In this course, students will learn the Oracle SQL starting at the most basic level and going to the most advanced level with many examples.

Objectives

By the end of this course, students will have a deeper knowledge and understanding of the Oracle SQL and how to write it.

Topics

- Basic SQL Functions
- The WHERE Clause
- Distinct Vs. Group By
- Aggregation Function
- Join Functions
- Date Functions
- OLAP Functions
- Temporary Tables

- Sub-query Functions
- Strings
- Interrogating the Data
- View Functions
- Set Operators
- Data Manipulation Language (DML)
- Statistical Aggregate Functions

Audience

This course is designed for anyone who has a desire to learn Oracle SQL from beginners to an advanced audience. This course is completely customizable by the client.

Prerequisites

There are no prerequisites for this course.

Duration

Two to three days

Oracle SQL

Course Outline

I.	The E	Basics of SQL	G.	Use IS NULL or IS NOT NULL when
	A.	Introduction		dealing with NULLs
	B.	Setting Your Default SCHEMA	H.	NULL is UNKNOWN DATA so NOT
	C.	SELECT * (All Columns) in a Table		Equal won't Work
	D.	SELECT Specific Columns in a Table	I.	Use IS NULL or IS NOT NULL when
	E.	Commas in the Front or Back?		dealing with NULLs
	F.	Place your Commas in front for better	J.	Using Greater Than or Equal To (>=)
		Debugging Capabilities	K.	AND in the WHERE Clause
	G.	Sort the Data with the ORDER BY	L.	Troubleshooting AND
	О.	Keyword	<u>г.</u> М.	OR in the WHERE Clause
	H.	ORDER BY Defaults to Ascending	N.	Troubleshooting Or
	l.	Use the Name or the Number in your	O.	Troubleshooting Character Data
	١.	ORDER BY Statement	О. Р.	Using Different Columns in an AND
	J.	Two Examples of ORDER BY using	٠.	Statement
	J.		0	
	K.	Different Techniques	Q. R.	Quiz – How many rows will return?
	r.	Changing the ORDER BY to	κ.	Answer to Quiz – How many rows wil
		Descending Order	0	return?
	L.	NULL Values sort First in Ascending	S.	What is the Order of Precedence?
		Mode (Default)	T.	Using Parentheses to change the
	M.	NULL Values sort First in Descending		Order of Precedence
		Mode (DESC)	U.	Using an IN List in place of OR
	N.	Major Sort vs. Minor Sorts	V.	The IN List is an Excellent Technique
	Ο.	Multiple Sort Keys using Names vs.	W.	IN List vs. OR brings the same
		Numbers		Results
	Р.	Sorts are Alphabetical, NOT Logical	X.	The IN List Can Use Character Data
	Q.	Using A CASE Statement to Sort	Y.	Using a NOT IN List
		Logically	Z.	Null Values in a NOT IN List Bring
	R.	How to ALIAS a Column Name		Back No Rows
	S.	A Missing Comma can by Mistake	AA.	A Technique for Handling Nulls with a
		become an Alias		NOT IN List
	T.	Comments using Double Dashes are	BB.	BETWEEN is Inclusive
		Single Line Comments	CC.	NOT BETWEEN is Also Inclusive
	U.	Comments for Multi-Lines	DD.	LIKE uses Wildcards Percent '%' and
	V.	Comments for Multi-Lines as Double		Underscore ' '
		Dashes per Line	EE.	LIKE command Underscore is
	W.	Formatting Number		Wildcard for one Character
	X.	Formatting Number Examples	FF.	LIKE Command Works Differently on
	Y.	Formatting Dates		Char Vs Varchar
	Z.	Formatting Date Example	GG.	LIKE Command on Character Data
		Torridating Bate Example	HH.	Quiz – What Data is Left Justified and
II.	The \	WHERE Clause	1 11 1.	what is Right?
•••	A.	The WHERE Clause limits Returning	II.	Numbers are Right Justified and
	Λ.	_	11.	
	B.	Rows Double Quoted Aliases are for	1.1	Character Data is Left
	Б.		JJ.	Answer – What Data is Left Justified
	_	Reserved Words and Spaces	IZIZ	and what is Right?
	C.	Character Data needs Single Quotes	KK.	An Example of Data with Left and
	ь.	in the WHERE Clause		Right Justification
	D.	Character Data needs Single Quotes,	LL.	A Visual of CHARACTER Data vs.
	_	but Numbers Don't		VARCHAR Data
	Ε.	Comparisons against a Null Value	MM.	Use the TRIM command to remove
	F.	NULL means UNKNOWN DATA so		spaces on CHAR Data

Equal (=) won't Work

Oracle SQL

	NN.	Escape Character in the LIKE Command changes Wildcards	B.	A two-table join using Non-ANSI Syntax with Table Alias
	00.	Escape Characters Turn off Wildcards in the LIKE Command	C.	A two-table join using A Different Syntax
	PP.	Quiz – Turn off that Wildcard	D.	You Can Fully Qualify All Columns
	QQ.	ANSWER – To Find that Wildcard	E.	A two-table join using ANSI Syntax
	RR.	The Distinct Command	F.	Both Queries have the same Results
	SS.	Distinct vs. GROUP BY	г.	and Performance
			0	
	TT.	Quiz – How many rows come back	G.	Quiz – Can You Finish the Join
		from the Distinct?		Syntax?
	UU.	Answer – How many rows come back	H.	Answer to Quiz – Can You Finish the
		from the Distinct?		Join Syntax?
	_		l.	Quiz – Can You Find the Error?
III.		egation	J.	Answer to Quiz – Can You Find the
	Α.	Quiz – You calculate the Answer Set		Error?
		in your own Mind	K.	Super Quiz – Can You Find the
	B.	Answer – You calculate the Answer		Difficult Error?
		Set in your own Mind	L.	Answer to Super Quiz – Can You Find
	C.	Quiz – You calculate the Answer Set		the Difficult Error?
		in your own Mind	M.	Quiz – Which rows from both tables
	D.	Answer – You calculate the Answer		won't return?
		Set in your own Mind	N.	Answer to Quiz - Which rows from
	E.	The 3 Rules of Aggregation		both tables won't return?
	F.	There are Five Aggregates	Ο.	LEFT OUTER JOIN
	G.	Quiz – How many rows come back?	P.	LEFT OUTER JOIN Results
	H.	Answer – How many rows come	Q.	LEFT OUTER JOIN Using (+)
	• • •	back?	Ř.	RIGHT OUTER JOIN
	I.	Troubleshooting Aggregates	S.	RIGHT OUTER JOIN Example and
	J.	GROUP BY delivers one row per	O.	Results
	0.	Group	T.	RIGHT OUTER JOIN Using (+)
	K.	GROUP BY Dept_No Works GROUP	Ü.	FULL OUTER JOIN
	IX.	BY 1 Fails	V.	FULL OUTER JOIN Results
	L.	Limiting Rows and Improving	W.	Which Tables are the Left and which
	L.	Performance with WHERE	VV.	
	M.		X.	Tables are Right? Answer - Which Tables are the Left
	IVI.	WHERE Clause in Aggregation limits	۸.	
	NI	unneeded Calculations	Y.	and which are the Right?
	N.	Keyword HAVING tests Aggregates	۲.	INNER JOIN with Additional AND
	_	after they are totaled	7	Clause
	Ο.	Keyword HAVING is like an Extra	Z.	ANSI INNER JOIN with Additional
	_	WHERE Clause for Totals		AND Clause
	Р.	Keyword HAVING tests Aggregates	AA.	ANSI INNER JOIN with Additional
		after they are totaled		WHERE Clause
	Q.	Getting the Average Values per	BB.	OUTER JOIN with Additional WHERE
		Column		Clause
	R.	Average Values per Column for all	CC.	OUTER JOIN with Additional AND
		Columns in a Table		Clause
			DD.	OUTER JOIN with Additional AND
IV.	Join F	- Functions		Clause Results
	A.	A Two-Table Join Using Traditional	EE.	Quiz – Why is this considered an
		Syntax		INNER JOÍN?
		•	FF.	Evaluation Order for Outer Queries

Oracle SQL

GG.	The DREADED Product Join	٧.	Date	Functions
HH.	The DREADED Product Join Results		A.	Getting the System Date
II.	The Horrifying Cartesian product join		B.	Extracting the Day, Month, Year from
JJ.	The ANSI Cartesian Join will ERROR			the SYSDATE
KK.	Quiz - Do these Joins Return the		C.	The Current_Timestamp
	Same Answer Set?		D.	Extracting From the
LL.	Answer – Do these Joins Return the			Current_Timestamp
	Same Answer Set?		E.	The ADD_MONTHS Command
MM.	The CROSS JOIN		F.	Using the ADD_MONTHS Command
NN.	The CROSS JOIN Answer Set			to Add Years
00.	The Self Join		G.	Using the LAST_DAY Command
PP.	The Self Join with ANSI Syntax		H.	Calculating the Days until the End of
QQ.	Quiz – Will both queries bring back			the Month
	the same Answer Set?		I.	Calculating the Months between Two
RR.	Answer – Will both queries bring back			Dates
	the same Answer Set?		J.	NEXT_DAY Command Finds a Future
SS.	Quiz – Will both queries bring back			Day of the Week
	the same Answer Set?		K.	The ROUND Command
TT.	Answer – Will both queries bring back		L.	Another ROUND Example
	the same Answer Set?		M.	The TRUNC Command
UU.	How would you join these two tables?		N.	Another TRUNC Example
VV.	An Associative Table is a Bridge that		Ο.	Adding Days and Minutes
	Joins Two Tables		P.	How to Get the Difference in Hours
WW.	Quiz – Can you write the 3-Table		Q.	Add or Subtract Days Plus Format
	Join?			Dates and Dollars
XX.	Answer to quiz – Can you write the 3-		R.	Formatting Date Example
	Table Join?		S.	A Summary of Math Operations on
YY.	Quiz – Can you write the 3-Table Join			Dates
	to ANSI Syntax?		T.	The EXTRACT Command
ZZ.	Answer – Can you write the 3-Table		U.	Using Intervals
	Join to ANSI Syntax?		V.	How a Simple Interval Handles Leap
AAA.	Quiz – Can you Place the ON			Year
	Clauses at the End?		W.	Troubleshooting Intervals – Invalid
BBB.	Answer – Can you Place the ON			Dates Error
	Clauses at the End?			
CCC.	The 5-Table Join – Logical Insurance	VI.		Functions
	Model		Α.	The Row_Number Command
DDD.	Quiz - Write a Five Table Join Using		B.	Quiz – How did the Row_Number
	ANSI Syntax		_	Reset?
EEE.	Answer - Write a Five Table Join		C.	Answer to Quiz – How did the
	Using ANSI Syntax		_	Row_Number Reset?
FFF.	Quiz - Write a Five Table Join Using		D.	Using a Derived Table and
	Non-ANSI Syntax		_	Row_Number
GGG.	Answer - Write a Five Table Join		E.	Ordered Analytics OVER
	Using Non-ANSI Syntax		F.	RANK and DENSE RANK
ннн.	Quiz –Re-Write this putting the ON		G.	RANK Defaults to Ascending Order
	clauses at the END		Н.	Getting RANK to Sort in DESC Order
III.	Answer –Re-Write this putting the ON		I.	RANK OVER and PARTITION BY
	clauses at the END		J.	PERCENT_RANK OVER
JJJ.	The Nexus Query Chameleon Writes		K.	PERCENT_RANK OVER with 14
	THE SULTOLLISHS			rows in Carcualido

Oracle SQL

Course Outline (cont'd)

L.	PERCENT_RANK OVER with 21		PP.	MAX OVER Without Rows
	rows in Calculation			Unbounded Preceding
M.	Finding Gaps between Dates		QQ.	The MIN OVER Command
N.	CSUM – Rows Unbounded Preceding		RR.	MIN OVER Without Rows Unbounded
	Explained			Preceding
Ο.	CSUM – Making Sense of the Data		SS.	MIN OVER Using PARTITION BY to
P.	CSUM – Making Even More Sense of			Reset
	the Data		TT.	Finding a Value of a Column in the
Q.	CSUM – The Major and Minor Sort			Next Row with MIN
α.	Key(s)		UU.	The CSUM for Each Product Id and
R.	The ANSI CSUM – Getting a		00.	the Next Start Date
11.	Sequential Number		VV.	Quiz – Fill in the Blank
S.	Reset with a PARTITION BY		WW.	Answer – Fill in the Blank
٥.	Statement		XX.	How Ntile Works
т	PARTITION BY only Resets a Single		YY.	Ntile
T.				
	OLAP not ALL of them		ZZ.	Ntile Percentile
U.	CURRENT ROW AND UNBOUNDED		AAA.	Another Ntile Example
	FOLLOWING		BBB.	Using Quantiles (Partitions of Four)
V.	Different Windowing Options		CCC.	NTILE with a Single Sort Key
W.	Moving Sum has a Moving Window		DDD.	NTILE Using a Value of 10
X.	How ANSI Moving SUM Handles the		EEE.	NTILE with a Partition
	Sort		FFF.	Using FIRST_VALUE
Υ.	Quiz – How is that Total Calculated?		GGG.	FIRST_VALUE
Z.	Answer to Quiz – How is that Total		HHH.	FIRST_VALUE after Sorting by the
	Calculated?			Highest Value
AA.	Moving SUM every 3-rows Vs a		III.	FIRST_VALUE with Partitioning
	Continuous Average		JJJ.	FIRST_VALUE Combined with
BB.	Partition by Resets an ANSI OLAP			Row_Number
CC.	The Moving Window is Current Row		KKK.	FIRST_VALUE and Row_Number
	and Preceding			with Different Sort
DD.	Moving Average		LLL.	Using LAST_VALUE
EE.	Moving Average Using a CAST		MMM.	LAST_VALUE
	Statement		NNN.	Using LAG and LEAD
FF.	Moving Average every 3-rows Vs a		000.	LEAD
	Continuous Average		PPP.	LEAD With Partitioning
GG.	Partition by Resets an ANSI OLAP		QQQ.	LEAD to Find the First Occurrence
HH.	Moving Difference using ANSI Syntax		RRR.	Using LEAD
II.	Moving Difference using ANSI Syntax		SSS.	Using LEAD with an Offset of 2
	with Partition By		TTT.	Using LAG
JJ.	COUNT OVER for a Sequential		UUU.	Using LAG with an Offset of 2
	Number		VVV.	LAG
KK.	COUNT OVER Without Rows		www.	
IXIX.	Unbounded Preceding		XXX.	MEDIAN with Partitioning
LL.	Quiz – What caused the COUNT		YYY.	CUME DIST
LL.	OVER to Reset?		ZZZ.	CUME_DIST with a Partition
MM.	Answer to Quiz – What caused the		AAAA.	SUM (SUM (n))
iviivi.	COUNT OVER to Reset?		AAAA.	CON (CON (H))
NN.	The MAX OVER Command	VII.	Tempo	rary Tables
OO.	MAX OVER Command MAX OVER with PARTITION BY	¥ II.	A.	There are two types of Temporary
JJ.	Reset		Λ.	Tables
	110001			1 45100

В.

CREATING A Derived Table

Oracle SQL

C.	Creating Multiple Derived Tables in		טט.	ON COMMIT DELETE ROWS
	the WITH Command			Example
D.	Creating Multiple Derived Tables in		EE.	Creating and Populating a Global
	the WITH Command			Temporary Table
E.	The Same Derived Query shown Two		FF.	Creating a Global Temporary Table
	Different Ways			Using a CTAS
F.	Most Derived Tables Are Used To		GG.	Creating a Global Temporary Table
	Join To Other Tables		00.	Using a CTAS Join
G.	The Three Components of a Derived		HH.	Creating a Temporary Table from
G.			1111.	
	Table			Another's Space
H.	Visualize This Derived Table		II.	A Global Temp Table That Populates
l.	Our Join Example with A Different			Some of the Rows
	Column Aliasing Style		JJ.	A Temporary Table with Some of the
J.	Column Aliasing Can Default For			Columns
	Normal Columns			
K.	Our Join Example With the WITH	VIII.	Sub-qu	ery Functions
	Syntax		A.	An IN List is much like a Subquery
L.	Quiz - Answer the Questions		B.	An IN List Never has Duplicates –
M.	Answer to Quiz - Answer the			Just like a Subquery
	Questions		C.	The Subquery
N.	Clever Tricks on Aliasing Columns in		D.	The Three Steps of How a Basic
IN.	a Derived Table		D.	Subquery Works
^			_	
O.	An Example of Two Derived Tables in		E.	These are Equivalent Queries
_	a Single Query		F.	The Final Answer Set from the
P.	Example of Two Derived Tables in a			Subquery
	Single WITH Statement		G.	Quiz- Answer the Difficult Question
Q.	WITH RECURSIVE Derived Table		H.	Answer to Quiz- Answer the Difficult
	Hierarchy			Question
R.	WITH RECURSIVE Derived Table		I.	Should you use a Subquery or a Join?
	Query		J.	Quiz- Write the Subquery
S.	WITH RECURSIVE Derived Table		K.	Answer to Quiz- Write the Subquery
	Definition		L.	Quiz- Write the More Difficult
T.	WITH RECURSIVE Derived Table			Subquery
••	Seeding		M.	Answer to Quiz- Write the More
U.	WITH RECURSIVE Derived Table		IVI.	Difficult Subquery
0.			N.	Quiz – Write the Extreme Subquery
١./	Looping			
V.	WITH RECURSIVE Derived Table		Ο.	Answer to Quiz- Write the Extreme
	Looping in Slow Motion		_	Subquery
W.	WITH RECURSIVE Derived Table		P.	Quiz- Write the Subquery with an
	Looping Continued			Aggregate
Χ.	WITH RECURSIVE Derived Table		Q.	Answer to Quiz- Write the Subquery
	Ends the Looping			with an Aggregate
Y.	WITH RECURSIVE Derived Table		R.	Quiz- Write the Correlated Subquery
	Definition		S.	Answer to Quiz- Write the Correlated
Z.	WITH RECURSIVE Final Answer Set		_	Subquery
AA.	Creating and Populating a Global		T.	The Basics of a Correlated Subquery
, , , ,	Temporary Table		U.	The Top Query always runs first in a
BB.	Global Temporary Table Definitions		0.	Correlated Subquery
DD.	Persist		V.	
CC			٧.	Correlated Subquery Example vs. a
CC.	Vital Information about Global		14/	Join with a Derived Table
	Temporary Tables		W.	Quiz- A Second Chance to Write a
				Correlated Subquery

IX.

... to Your Success!"

Oracle SQL

X.	Answer - A Second Chance to Write a		E.	The TRIM Command trims both
	Correlated Subquery		_	Leading and Trailing Spaces
Υ.	Quiz- A Third Chance to Write a		F.	A Visual of the TRIM Command Using
	Correlated Subquery			Concatenation
Z.	Answer - A Third Chance to Write a		G.	Trim and Trailing is Case Sensitive
	Correlated Subquery		H.	How to TRIM Trailing Letters
AA.	Quiz- Last Chance to Write a		I.	The SUBSTRING Command
	Correlated Subquery		J.	How SUBSTRING Works with NO
BB.	Answer – Last Chance to Write a			ENDING POSITION
	Correlated Subquery		K.	How SUBSTRING Works with a
CC.	Quiz – Write the Extreme Correlated			Starting Position of -1
	Subquery		L.	How SUBSTRING Works with an
DD.	Answer To Quiz – Write the Extreme			Ending Position of 0
	Correlated Subquery		M.	An Example using SUBSTRING,
EE.	Quiz- Write the NOT Subquery			TRIM and CHAR Together
FF.	Answer to Quiz- Write the NOT		N.	Concatenation
	Subguery		Ο.	Concatenation and SUBSTRING
GG.	Quiz- Write the Subquery using a		P.	Four Concatenations Together
	WHERE Clause		Q.	UPPER and LOWER Commands
HH.	Answer - Write the Subquery using a		R.	LPAD and RPAD
	WHERE Clause		S.	SOUNDEX
II.	Quiz- Write the Subquery with Two		T.	REGEXP_LIKE
	Parameters		Ü.	REGEXP_REPLACE
JJ.	Answer to Quiz- Write the Subquery		V.	REGEXP INSTR
00.	with Two Parameters		W.	REGEXP_INSTR Options
KK.	How the Double Parameter Subquery		X.	REGEXP_INSTR Example
TXIX.	Works		Λ. Υ.	REGEXP_INSTR Example 2
LL.	More on how the Double Parameter		١.	NEOLXI _INOTN Example 2
LL.	Subquery Works	Х.	Interro	gating the Data
MM.	Quiz – Write the Triple Subquery	۸.	A.	Using the LOWER Command
NN.	Answer to Quiz – Write the Triple		л. В.	A LOWER Command Example
ININ.	Subquery		C.	Using the UPPER Command
00.	Quiz – How many rows return on a		D.	An UPPER Command Example
00.	NOT IN with a NULL?		E.	Non-Letters are Unaffected by
PP.	Answer – How many rows return on a		∟.	UPPER and LOWER
FF.	NOT IN with a NULL?		F.	Quiz – Fill in the Answers for the
00			Г.	NULLIF Command
QQ.	How to handle a NOT IN with		G.	Quiz – Fill in the Answers for the
DD	potential NULL Values		G.	NULLIF Command
RR.	IN is equivalent to =ANY			
SS.	Using a Correlated Exists		H.	The COALESCE Command
TT.	How a Correlated Exists matches up		l.	The COALESCE Answer Set
UU.	The Correlated NOT Exists		J.	The COALESCE Command – Fill In
01			17	the Answers
Strings			K.	The COALESCE Answer Set
A.	The LENGTH Command Counts		L.	COALESCE is Equivalent to This
_	Characters			CASE Statement
B.	The LENGTH Command – Spaces		M.	The Basics of CAST (Convert and
_	can Count too			Store)
C.	The LENGTH Command and Char		N.	Some Great CAST (Convert and
	(20) Data			Store) Examples
D.	The LENGTH Needs a TRIM		Ο.	A Rounding Example

XI.

Q.

Altering a Table after a View Has

Been Created

... to Your Success!"

Oracle SQL

P.	Quiz - The Basics of the CASE Statements		R.	A View that Errors after an ALTER
Q.	Answer to Quiz - The Basics of the	XII.	Set O	perators Functions
	CASE Statements		Α.	Rules of Set Operators
R.	Using an ELSE in the Case Statement		B.	INTERSECT Explained Logically
S.	Using an ELSE as a Safety Net		C.	UNION Explained Logically
T.	Rules for a Valued Case Statement		D.	UNION Explained Logically
U.	Rules for a Searched Case Statement		E.	UNION ALL Explained Logically
V.	Valued Case Vs. A Searched Case		F.	Minus Explained Logically
W.	Quiz - Valued Case Statement		G.	An Equal Amount of Columns in both
Χ.	Answer - Valued Case Statement			SELECT List
Y.	Quiz - Searched Case Statement		H.	Columns in the SELECT list should be
Z.	Answer - Searched Case Statement			from the same Domain
AA.	The CASE Challenge		I.	The Top Query handles all Aliases
BB.	The CASE Challenge Answer		J.	The Bottom Query does the ORDER
CC.	Combining Searched Case and			BY
	Valued Case		K.	Great Trick: Place your Set Operator
DD.	A Trick for getting a Horizontal Case			in a Derived Table
EE.	Nested Case		L.	UNION Vs UNION ALL
FF.	Put a CASE in the ORDER BY		<u>.</u> М.	A Great Example of how MINUS
11.	Tut a CASE III tile ONDEN DT		IVI.	works
View E	unations		N.I.	
	unctions		N.	USING Multiple SET Operators in a
Α.	The Fundamentals of Views		_	Single Request
B.	Creating a Simple View to Restrict		Ο.	Changing the Order of Precedence
	Sensitive Columns			with Parentheses
C.	You SELECT From a View		P.	Using UNION ALL for speed in
D.	Creating a Simple View to Restrict			Merging Data Sets
	Rows			
E.	A View Provides Security for Columns			
	and Rows	XIII.	Table	Create and Data Types
F.	Basic Rules for Views		A.	The Basics of Creating a Table
G.	How to Modify a View		В.	Creating a Table with Default Values
H.	An Exception to the ORDER BY Rule		C.	Altering a Table to Add a Column
11.	inside a View		D.	Altering a Table to Drop a Column
I.			E.	
1.	Views Are Sometimes CREATED for			Renaming a Table
	Formatting		F.	Dropping a Table
J.	Creating a View to Join Tables		G.	Defining Primary Keys
	Together		H.	Defining a Primary Key after the Table
K.	How to Alias Columns in a View			Has Been Created
	CREATE		I.	Defining a Foreign Key after the Table
L.	The Standard Way Most Aliasing is			Has Been Created
	done		J.	Creating a Table Using a CTAS
M.	What Happens When Both Aliasing		K.	Creating a Table Using a CTAS Join
	Options Are Present		L.	Creating a Global Temporary Table
N.	Resolving Aliasing Problems in a			Using a CTAS
• • •	View CREATE		M.	Creating a Global Temporary Table
Ο.	Answer to Resolving Aliasing		171.	Using a CTAS Join
J .			N.	
n	Problems in a View CREATE		IN.	Creating a Temporary Table from
Ρ.	Aggregates on View Aggregates			Another's Space

N.

A CORR Example

... to Your Success!"

Oracle SQL

XIV.	Data	Manipulation Language (DML)	Ο.	Another CORR Example so you can
	A.	INSERT Syntax # 1		compare
	B.	INSERT example with Syntax 1	P.	The COVAR_POP Function
	C.	INSERT Syntax # 2	Q.	A COVAR_POP Example
	D.	INSERT example with Syntax 2	R.	Another COVAR_POP Example so
	E.	INSERT/SELECT Command		you can compare
	F.	INSERT/SELECT example using All	S.	The COVAR_SAMP Function
		Columns (*)	T.	A COVAR_SAMP Example
	G.	INSERT/SELECT example with Less	U.	Another COVAR_SAMP Example so
		Columns		you can compare
	H.	Two UPDATE Examples	V.	The REGR_INTERCEPT Function
	I.	Subquery UPDATE Command Syntax	W.	A REGR_INTERCEPT Example
	J.	Example of Subquery UPDATE	X.	Another REGR_INTERCEPT
		Command		Example so you can compare
	K.	Join UPDATE Command Syntax	Y.	The REGR_SLOPE Function
	L.	The DELETE Command Basic Syntax	Z.	A REGR_SLOPE Example
	M.	DELETE ALL Rows in a Table	AA.	Another REGR_SLOPE Example so
	N.	A DELETE Example Deleting only		you can compare
		Some of the Rows	BB.	The REGR_AVGX Function
	Ο.	Example of Subquery DELETE	CC.	A REGR_AVGX Example
		Command	DD.	Another REGR_AVGX Example so
	P.	Example of Subquery DELETE That		you can compare
		Gets Rid of Null Values	EE.	The REGR_AVGY Function
			FF.	A REGR_AVGY Example
XV.	Statis	stical Aggregate Functions	GG.	Another REGR_AVGY Example so
	A.	Numeric Manipulation Functions		you can compare
	B.	The Stats Table	HH.	The REGR_COUNT Function
	C.	The STDDEV_POP Function	II.	A REGR_COUNT Example
	D.	The STDDEV_POP Example	JJ.	The REGR_R2 Function
	E.	The STDDEV_SAMP Function	KK.	A REGR_R2 Example
	F.	A STDDEV_SAMP Example	LL.	The REGR_SXX Function
	G.	The VAR_POP Function	MM.	A REGR_SXX Example
	Ĥ.	A VAR_POP Example	NN.	The REGR_SXY Function
	I.	The VAR_SAMP Function	00.	A REGR_SXY Example
	J.	A VAR_SAMP Example	PP.	The REGR_SYY Function
	K.	The VARIANCE Function	QQ.	A REGR_SYY Example
	L.	A VARIANCE Example	RR.	Using GROUP BY
	M	The CORR Function		V