
 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Improving Agile with Acceptance Test Driven Development 
 

Course Summary 
 
 
 

Description 
 
A fundamental axiom of the Agile Manifesto is that “business people and developers must work together 
daily throughout the project.”  The framers of the Agile Manifesto were all seasoned developers who 
understood how to structure these regular interactions with the client to produce software that met the 
clients’ requirements in the most efficient way possible, but these patterns of interaction – the descriptions 
of what happens in these daily collaborations – was left up to the various flavors of Agile to manage in 
their own unique ways. 
 
Over the years various Agile gurus tried to tried to document and describe the best practices used by the 
experts to manage these business and developer interactions in the most productive, efficient and 
productive ways possible.  A variety of approaches have been developed in the Agile community 
including Dan North’s Behavior Driven Design (BDD), Gojko Adzic’s Specification to try and capture these 
best practices. ATDD synthesizes this work with the automation concepts from Ken beck’s Test Driven 
Development which are supported with open source tools like Gherkin and Cucumber. 
 
The course starts with a critical analysis the Agile processes with a focus on identifying the root causes of 
inefficiencies and the various types of problems that occur during an Agile development project.  This is 
followed by an overview of the ATDD process and how it specifically targets the root causes of these 
problems. 
 
Students are then led on a detailed walkthrough of the ATDD process emphasizing its iterative nature, the 
development of high quality acceptance tests as a driver of collaborative work and how the four phases of 
the ATDD cycle – Discuss, Distill, Develop and Demo – integrate with the other practices and disciplines 
common to Agile development, such as TDD, model based design, and iterative development. 
 
Using a worked example and corresponding lab exercises, students work through the details of each of 
the phases, exploring the techniques and developing the artifacts appropriate at that point such examples 
with acceptance criteria and a domain specific language in the Discuss phase, executable acceptance 
tests in the Distill phase and derived component unit tests in the development phase. 
 
During the examples and the hands on lab exercises, the Gherkin specification language is used to 
create acceptance tests for automated execution.  Students are taught how to use all of the language 
constructs and how to follow the best practices involved in writing Gherkin tests such as when and how to 
use scenario outlines, data tables, tags and other features. 
 
The course concludes with an examination of how the ATDD process integrates with various standard 
Agile process models and other current trends like microservices and devops.  There is also a discussion 
of metrics that can be used to evaluate and improve an Agile team’s implementation of ATDD. 
 
All of the theory presented is reinforced with examples, real world case studies, hands-on exercises, and 
projects. 



 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Improving Agile with Acceptance Test Driven Development 
 

Course Summary (cont’d) 
 
 
 
Objectives 
 
After taking this course, students will be able to: 

 Identify root causes of failures and inefficiencies in Agile projects. 

 Describe the ATDD process phases and how ATDD activities address the root causes of failure. 

 Describe how the ATDD process fits into the standard Agile iterative module. 

 Develop robust specifications by example with acceptance criteria during the Discuss phase. 

 Turn examples in to efficient and high quality acceptance tests during the Distill phase. 

 Describe and use the metrics to evaluate the quality of the acceptance tests. 

 Write acceptance tests in Gherkin using the full set of features offered by the language. 

 Develop a domain specific language appropriate for the project. 

 Write acceptance in a declarative form and describe why we use declarative instead of imperative 
forms for the tests. 

 Use Gherkin features, backgrounds scenarios, scenario outlines, tags and data tables correctly. 

 Describe Gherkin best practices. 

 Describe how to Integrate ATDD with their Agile process 

 Describe how ATDD supporting Agile artifacts like backlogs and spikes 

 How to integrating Agile deliverables and ATDD artifacts 

 How to support development by having ATDD tests feed into the Test Driven Development process. 
 
Topics 
 

 Why ATDD? 

 Tests as Drivers of Development 

 The ATDD Process 

 The Discussion Phase 

 The Distill Phase 

 Gherkin Basics 

 More Gherkin 

 The Development Phase 

 The Demo Phase 

 Best Practices 

 Summary 

 
Audience 
 
The course is appropriate anyone who is involved in or responsible for an Agile development project or 
process. 
 
Prerequisites 
 
The course has no prerequisites other than a familiarity with Agile processes. 
 
Duration 
 
Two days 



 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Improving Agile with Acceptance Test Driven Development  
 

Course Outline 
 
I. Why ATDD? 

A. Root causes of software project 
failures 

B. Errors, faults, and failures 
C. How ATDD addresses the root causes 
D. Filling the gaps in Agile with ATDD 
E. How ATDD supports efficient 

development 
F. Effective software, efficient 

development, validation, and 
verification 
 

II. Tests as Drivers of Development 
A. Unit testing and integration testing 
B. The importance of good tests 
C. The Agile testing quadrants 
D. Test automation in the four quadrants 
E. Supporting Test Driven Development 

with ATDD 
F. Acceptance tests as a system 

specification 
G. Interfaces, implementations, and 

functional testing 
 

III. The ATDD Process 
A. Iterative and incremental: Red, Green, 

Go 
B. The four phases: Discuss, Distill, 

Develop, Demo 
C. Deliverables for each phase 
D. The deliverable: Gherkin acceptance 

tests 
E. Integrating the ATDD phases with 

Agile iterations and sprints 
F. Backlogs, grooming and ATDD 

artifacts 
G. Incorporating ATDD from the project 

management perspective 
 

IV. The Discussion Phase 
A. Collaborating to develop examples 
B. Identifying acceptance criteria for 

examples 
C. Iterative development of the examples 

D. Examples, user stories, requirements, 
and features 

E. Moving from examples to acceptance 
tests for features 

F. Developing a Domain Specific 
Language (DSL) 
 

V. The Distill Phase 
A. Robustness and correctness – drilling 

down into the examples 
B. Coverage and correctness 
C. Developing optimal sets of 

acceptance tests 
D. Exploring invalid cases, edge cases 

and outliers 
E. Using the DSL to write the cases 
F. Declarative versus imperative 

acceptance tests 
G. Organizing the tests by features 
H. Feeding back into the discussion 

phase 
 

VI. Gherkin Basics 
A. Gherkin as a structured acceptance 

test language 
B. Features and feature files 
C. Gherkin scenarios as test cases 
D. The Given, When, Then syntax for 

scenario steps 
E. The Background section 
F. Using And and But for readability 
G. How Cucumber executes a feature file 
H. Comments and feature file 

documentation 
 

VII. More Gherkin 
A. Using Scenario Outlines and Example 

Tables 
B. Organizing complex test data with 

Data Tables 
C. Well-structured Gherkin Scenarios 
D. Best practices in organizing Scenarios 

and Steps 
E. Best practices for using data in a 

scenario step 



 

 
 

 

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names.  References to other companies and their products are for 
informational purposes only, and all trademarks are the properties of their respective companies.  It is not the intent of ProTech Professional Technical Services, Inc. to use any of these 

names generically 
 

"Charting the Course ... 

... to Your Success!" 

Improving Agile with Acceptance Test Driven Development  
 

Course Outline (cont’d) 
 

F. When to use Scenarios, Backgrounds, 
and Outlines 

G. Using Tagging for selective test 
execution 
 

VIII. The Development Phase 
A. Planning the incremental addition of 

acceptance tests 
B. Supporting the coding and build 

processes 
C. Selective execution of Scenarios with 

tags 
D. What failing tests tell us 
E. Using ATDD for continuous regression 

testing 
F. Maintaining the acceptance tests as 

system specification 
 

IX. The Demo Phase 
A. Validation of the system functionality 
B. Acceptance tests as a basis for 

interface development 
C. Understanding and using the results 

of the Demo phase 
 

X. Best Practices 
A. Review of best practices by ATDD 

phase 
B. Introducing ATDD into an Agile 

process 
C. Recommended reviews and quality 

checklists 
D. Using ATDD to refactor the 

development process 
E. Using ATDD to improve efficiency of 

project communications 
F. Typical pitfalls, problems, roadblocks, 

and strategies for resolution 
 

XI. Summary 
A. Review of the course 
B. How to move forward and apply what 

has been learned 
C. Other topics requested by students 
D. Assessment of knowledge and skills 

gained 
 


