

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Java Bootcamp for Software Testers

Course Summary

Description

With the increasing use of Test Driven Development and other collaborative methodologies, like DevOps, that
require increased collaboration between programmers and testers, having an understanding of how the Java
programming language works from a testing perspective is becoming a necessary skill for soft­ ware testers.

This course is a hands­on introduction to the Java programming language from a software tester’s point of
view. The goal of this course is not to teach students how to program in Java but rather to understand how
Java is designed to be used and what the common programming and code design failures are most likely to
made by programmers. The Java programming concepts will be presented not from the perspective of writing
code, but rather from the perspective of doing critical analysis of existing Java code, and developing strategies
for developing tests and test methods that can be used in both structural and functional testing of Java
applications.

The course reviews sound and generally accepted best practices for software testing, and demonstrates how
they can be “tuned” to be more sensitive the sort of errors that Java developers and designers are prone to
make.

The course walks through the basics of both the Java language, and good OO programming standards and
practices, and shows how that knowledge can be used to plan and design tests that identify not only functional
problems in the code, but poorly designed or non-standard code that can be the source of errors in the code
development.

One of the methodologies that is becoming standard in Java development is the use of test driven development
or TDD. Students will be introduced into the TDD methodology through hands on examples which are
designed to demonstrate the role the tester plays in these collaborative methodologies like TDD and how to
work effectively with testers in these environments.

The course concludes with a look at code reviews and walkthroughs and the most effective roles, practices and
contributions that testers can provide in those peer review settings. All of the theory presented is reinforced
with examples, real world case studies, hands on exercises and worked examples.

Topics

 Review of Basic Testing Concepts and
Practices

 Object Oriented Programming Concepts and
Best Practices

 How Java works: Runtime environments,
JVMs, bytecode, class libraries, etc.

 Configuration issues and pitfalls for Java

 Java coding best practices

 Writing functional and structural tests for
Java code

 Common errors in Java class design and
code structure

 Understanding inheritance and common
errors made implementing inheritance

 Exception handling and best practices

 Java APIs and Class Libraries

 Code smells and symptoms of code design
problems

 Test Driven Development

 Acceptance Test Driven Development

 Code Reviews and Code Walk throughs

 Automated tool for testing and analysis.

 Current best practices and standards

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Java Bootcamp for Software Testers

Course Summary (cont’d)

Audience

The course is intended primarily for software testers although it is also appropriate for developers looking to
improve the quality of their programming.

Prerequisites

Since this is a course for testers, students should have a basic knowledge of software testing practices and
techniques. Some experience with a programming language is helpful, but a basic entry level know­ ledge of
programming concepts, ideas and terminology is assumed.

Duration

Five days

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Java Bootcamp for Software Testers

Course Outline

I. Review of basic testing terms and

concepts.

This introductory module is intended to establish a
common baseline of terms, concepts, and ideas that
will be used in the rest of the course. Topics
reviewed are coverage, types of testing, basic testing
principles. The testing concepts of verification versus
validation, completeness, test sensitivity, etc. This
and the following module are not intended to teach
the testing topics but rather are for the purpose of
establishing a common baseline for the rest of the
material.

II. Review of basic testing techniques.

Review of test execution, setting testing goals and
integration into the development cycle. Testing within
the waterfall and agile development processes. Role
of the tester and quality with respect to developer.
Planning the testing program

III. Object Oriented Development.

This module provides a basic review of the OO
development paradigm. How it differs from the
structured paradigm (under which software testing
was developed as a discipline). Differences in OO
versus structured development and systems design
and how software testing has modified and extended
standard practices and techniques to accommodate
those differences.

IV. The Java language and architecture.

Introduction to how the Java language works. The
virtual machine, JRE, and class libraries. The
distributed and modular architecture of the language
and the importance of configuration testing for Java
apps. Overview of the “Java ecosystem” and the
sandbox model. The Java philosophy and pro­ cess
for managing the distributed model. Common sorts of
problems that developers overlook.

V. Java Structured code

In this module, we look at the parts of the java
programming language that are similar to most other
programming languages: operators, data types,
variables, scope. Specific features of Java that are
“error prone” such as the difference between the
bitwise and logical operators are covered. The basics
of loops and flow control are reviewed as well as the
specific techniques for testing those constructs.

VI. The Java Class and program structure

This modules looks at the basic structure of Java
classes, focusing on instance variables and methods.
Good Java design techniques are covered such as
designing to interfaces, data hiding, encapsulation,
and the proper design of methods. Static methods
and variables are discussed.

VII. Java Classes, objects, instances and

references

In this module we look at the dynamics of using
objects in Java: how they are created and referred to
with reference variables. We look at the typical errors
introduced by shallow versus deep copies and the
sorts of typical problems that we see with reference
variables, initialization and object versus class
scoping of methods and variables. Specifically, we
look at test strategies that allow for us identify and
detect the sorts of errors that often are introduced by
developers in managing object instances.

VIII. Testing Java Class Design

Continuing from the previous module, we examine
typical ways Java classes can be poorly designed,
and the impact that has on the quality of code.
Examples are broken interfaces, bad choices in
parameters and return values, and inappropriate
modularization. Emphasis is on looking for the code
smells that suggest structural problems and test
strategies to revel those problems.

IX. Inheritance.

One of the major issues in moving to OO testing is
dealing with the errors that are introduced by the bad
use of inheritance. The basics of inheritance in OO
languages, with emphasis on Java, is covered along
with the best practices for use of inheritance. Bad
inheritance design is a very common source of errors
but is also one of the more subtle sources of errors as
well. This module covers the mechanics of
inheritance, overriding methods, shadowing variables,
working with superclass methods and variables and
the standard best practices for these (for example,
this Liskov substitution principle).

X. Testing inheritance

Continuing from the previous module, this one covers
the ways to explore and test for problems in in­
heritance, and how these can interact with the
problems also covered in previous modules on testing
class design.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Java Bootcamp for Software Testers

Course Outline (cont’d)

XI. Exceptions and exception handling and

assertions

This module covers the Java exception handling
mechanism and the best practices on how it should
be used. The module covers the effective use or
try­throw­catch blocks, assertions and exception
classes and hierarchies. The problems of nested try
blocks and re throwing exceptions are covered.

XII. Testing Exception Handling

Continuing from the previous module, this covers
planning a set of exception tests and testing for
exception failures, especially in complex exception
handling cases.

XIII. Java APIs.

This module is a high level overview of the Java
collections API and the Java Reflection API. Typical
programmer problems encountered with these APIs
are covered as well as suggested test methods.

XIV. The Java Class Libraries

An overview of the main Java class libraries: IO, RMI,
Networking, JDBC etc. This module gives the testers
a sense of the functionality of each module, typical
patterns of use and typical types of testing one would
want to cover for the most common types of errors in
library use.

XV. Code Smells

This is an introduction into the Test Driven
Development and refactoring idea of Code Smells,
which are identifiable structural characteristics that
usually illustrate poorly designed code. The
occurrence of code smells can often identify specific
areas of code to test and what sort of testing may be
most useful at identifying code problems.

XVI. Test Driven Development

This module in an introduction to the procedures,
techniques, and tools of TDD with typical examples of
how it is used by developers to write Java code. The
emphasis of the module is on the role of the tester
and testing practices in TDD and how the quality of
the tests used directly affect the quality of the code
produced.

XVII. Acceptance Test Driven Development

Similar in structure and approach to the previous
module, this module introduced the processes, tools
and techniques or ATDD and the role of the tester in
developing the acceptance tests using Gherkin as
part of the development process

XVIII. Code Reviews and Code Walkthroughs

Peer reviews are an integral part of development
processes for producing high quality code. How
these work, and how they are structured are covered
in the module but from the perspective of the role of
the tester and the optimal way testers can contribute
when included in the review process.

XIX. Java Standards and Best Practices

There are a wide collection of Java standards and
quasi­standards out in the Java community such as
Java EE, Spring, Servelets, and many more. This
module is a survey of what these are and what
established best practice standards exist for the
overall Java community

