Secure Java EE Development Version 7.0

Course Summary

Description

This comprehensive course shows experienced developers of Java EE applications how to secure those applications and to apply best practices with regard to secure enterprise coding. Authentication, authorization, and input validation are major themes, and students get good exposure to basic Java cryptography for specific development scenarios, as well as thorough discussions of HTTPS configuration and certificate management, error handling, logging, and auditing.

Perhaps the most eye-opening parts of the course concern common web “hacks,” or attack vectors. Students see how easy it is to leave an application unguarded against cross-site scripting (XSS), cross-site request forgery (CSRF), SQL injection, and other attack types -- and learn that it's also easy to fix such vulnerabilities and the importance of a secure development process.

In the last part of the course we move beyond the scope of traditional, interactive web applications to consider RESTful web services, single sign-on systems, and third-party authorization. Students learn to perform HMAC cryptography as a means of HTTP message-level authentication, and get introductions and hands-on exercise with SAML SSO and OAuth.

Objectives

At the end of this course, students will be able to:

- Generally, be prepared to develop secure Java web applications and services, or to secure existing applications and services by refactoring as necessary.
- Define security constraints and login configurations that instruct the web container to enforce authentication and authorization policies.
- Guard against common web attacks including XSS, CSRF, and SQL injection.
- Validate user input aggressively, for general application health and specifically to foil injection and XSS attacks.
- Configure a server and/or application to use one-way or two-way HTTPS.
- Apply application-level cryptography where necessary.
- Secure log files and establish audit trails for especially sensitive information or actions.
- Use HMAC security as appropriate in RESTful web services.
- Participate in SAML SSO systems, and be aware of the security concerns involved in single sign-on.
- Implement server and client sides of the OAuth-2.0 initial flow in order to provide third-party authorization to resources in a secure manner.

Topics

- Secure Web Applications
- Authentication and Authorization
- Common Web Attacks
- Input Validation
- HTTPS and Certificates
- Application-Level Cryptography
- Secure Development Practices
- REST Security Basics
- HMAC Security
- SAML SSO
- OAuth
- Appendix A. Learning Resources

Audience

This course is designed for experienced developers of Java EE applications.

Prerequisites

- Java programming experience is essential
- Servlets programming experience is required
- JSP page-authoring experience is recommended but not required
- Understanding of RESTful web services as implemented in JAX-RS will be highly beneficial, but is not strictly required.

Duration

Five days
Secure Java EE Development Version 7.0

Course Outline

I. Secure Web Applications
 A. Threats and Attack Vectors
 B. Server, Network, and Browser Vulnerabilities
 C. Secure Design Principles
 D. GET vs. POST
 E. Container Authentication and Authorization
 F. HTML Forms
 G. Privacy Under /WEB-INF
 H. HTTP and HTTPS
 I. Other Cryptographic Practices
 J. SOA and Web Services
 K. The OWASP Top 10

II. Authentication and Authorization
 A. HTTP BASIC and DIGEST Authentication Schemes
 B. Declaring Security Constraints
 C. User Accounts
 D. Safeguarding Credentials in Transit
 E. Replay Attacks
 F. Authorization Over URL Patterns
 G. Roles
 H. FORM Authentication
 I. Login Form Design
 J. EJB Authorization
 K. Programmatic Security
 L. Programmatic Security in JSF

III. Common Web Attacks
 A. Single Points of Decision
 B. Cross-Site Scripting
 C. Validation vs. Output Escaping
 D. Forceful Browsing
 E. Cross-Site Request Forgery
 F. Request Tokens
 G. Injection Attacks
 H. Protections in JDBC and JPA
 I. Session Management
 J. Taking Care of Cookies

IV. Input Validation
 A. Validating User Input
 B. Validation Practices
 C. Regular Expressions
 D. JSF Validation
 E. Bean Validation (a/k/a JSR-303)
 F. Constraint Annotations
 G. Cross-Field Validation
 H. Built-In Support in Java EE

I. Using a Validator
J. Producing Error Responses

V. HTTPS and Certificates
 A. Digital Cryptography
 B. Encryption
 C. SSL and Secure Key Exchange
 D. Hashing
 E. Signature
 F. Keystores
 G. keytool
 H. Why Keys Aren't Enough
 I. X.509 Certificates
 J. Certificate Authorities
 K. Obtaining a Signed Certificate
 L. Configuring HTTPS
 M. Client-Side Certificates and Two-Way SSL
 N. PKCS #12 and Trust Stores
 O. CLIENT-CERT Authentication

VI. Application-Level Cryptography
 A. The Java Cryptography Architecture
 B. Secure Random Number Generation
 C. The KeyStore API
 D. Digital Signature
 E. Hashing
 F. Password Hashing
 G. Why Hashing Isn't Enough
 H. Salts
 I. Slow Algorithms
 J. Key Lengthening and Key Strengthening
 K. The Java Cryptography Extensions
 L. The SecretKey and KeyGenerator Types
 M. Symmetric Encryption
 N. Choosing Algorithms and Key Sizes
 O. Dangerous Practices

VII. Secure Development Practices
 A. Secure Development Cycle
 B. Error Handling and Information Leakage
 C. Failing to a Secure Mode
 D. Logging Practices
 E. Appropriate Content for Logs
 F. Auditing
 G. Strategies: Filters, Interceptors, and Command Chains
 H. Penetration Testing
 I. Back Doors
 J. Secure Code Review
Secure Java EE Development Version 7.0

Course Outline (cont’d)

VIII. REST Security Basics
A. Security Concerns for REST Services
B. HTTPS
C. HTTP BASIC and DIGEST
D. Authorization by URL Pattern
E. Cross-Site Scripting
F. Injection Attacks
G. Cross-Site Request Forgery
H. Common Countermeasures

IX. HMAC Security
A. Use Case: Message Authentication
B. Digital Signature
C. Hashing as Signature: the HMAC
D. Appropriate Salts
E. Canonicalization
F. Amazon S3
G. Timestamps
H. Signing and Verifying Messages
I. XML Cryptography and Canonicalization
J. Canonicalizing JSON

X. SAML SSO
A. Use Case: Single Sign-On
B. SAML Orientation
C. SAML Assertions
D. SAML Protocol
E. HTTP Bindings
F. Speaking "Through" the Browser
G. Artifact and SOAP Bindings
H. SAML Attributes
I. SAML SSO
J. Federated Identity
K. Identity Providers and Service Providers
L. Metadata
M. OpenID
N. Universal Identity
O. Security Concerns in SSO Systems

XI. OAuth
A. Use Case: Third-Party Authorization
B. OAuth
C. Initial Flow
D. Grant Types
E. Access Tokens
F. The Google OAuth API
G. Implementing Authorization and Resource Servers
H. Implementing Clients
I. Security Concerns with OAuth

XII. Appendix A. Learning Resources