

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Implementing ATDD with Cucumber and Java

Course Summary

Description

Acceptance Test Driven Development (ATDD) has become a standard development technique used by
Agile teams to work through a collaborative process to develop a set of acceptance tests that describe
how the system under development should behave. These tests are written in a special language called
Gherkin and executed using the Cucumber program.

This course focuses on the process of writing the executable step definitions in Java for the Cucumber
program so that the acceptance tests can be run automatically, in much the same way JUnit runs unit
tests automatically. All of the theory presented in this course is reinforced with examples, real world case
studies, hands on exercises and projects.

The course assumes that the acceptance tests have been written and validated and walks through the
process of writing and testing the automation code and then implementing the step definitions to run the
tests through several different kinds of interfaces.

Topics

 How Gherkin works: Gherkin syntax and
Step Definitions

 Agile automated testing – testing
through interfaces

 Cucumber architecture and functionality

 How Cucumber executes Gherkin via
Step Definitions

 The three stage test automation model:
tests, interface and application

 Testing the tests with a test interface
and application mock

 Verification of the step definition logic

 Building the test class around the step
definition

 Using JUnit assertions for test
evaluation

 Handling complex data with Data Tables
and Java Collections

 Using Selenium to test through a web
interface

 The Page Object Pattern

 Testing through Web Services

 Selective Scenario execution

 Cucumber reporting and formatting

 Responding to changes in an interface
or the acceptance tests

Audience

The course is appropriate anyone who is involved in the implementation of automated ATDD tests.

Prerequisites

Students should be at least intermediate level Java programmers and should have some working
familiarity with a Java IDE and test automation framework like JUnit or TestNG. The course uses Eclipse
as the Java IDE and JUnit as the test framework.

Duration

Two days

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Implementing ATDD with Cucumber and Java

Course Outline

I. Gherkin Basics
A. Gherkin as a structured acceptance test

language
B. Features and feature files
C. Gherkin scenarios as test cases
D. The Given, When, Then syntax for

scenario steps
E. The Background section
F. Using And and But for readability
G. How Cucumber executes a feature file
H. Comments and feature file documentation

II. More Gherkin

A. Using Scenario Outlines and Example
Tables

B. Moving complex test data with Data
Tables

C. Well structured Gherkin Scenarios
D. Best practices in organizing Scenarios and

Steps
E. Best practices for using data in a scenario

step
F. When to use Scenarios, Backgrounds and

Outlines
G. Organizing the acceptance test artifacts

for automation

III. Tests as Drivers of Development

A. Unit testing and integration testing
B. The Agile testing quadrants
C. Testing through interfaces
D. The three layer problem: test code,

interface and application
E. Implementation strategy for automation
F. Unit testing the three layers

IV. Testing Behind the Interface and Mocks

A. Unit testing the test code
B. Using a mock application
C. Working with a test interface
D. Using mocks for interface testing

V. Cucumber Architecture

A. Organization of a Cucumber project
B. Organizing feature files and step

definitions
C. How Cucumber finds and executes step

definitions
D. Where Cucumber can fail and how to

prevent it

E. Matching step definitions with annotations
using regular expressions.

F. Managing complex data in Data Tables
G. Running Cucumber in the IDE and at the

command line

VI. Cucumber Test Logic

A. Defining the test pass and fail criteria
B. Using assertions to implement test

decisions
C. Using assertions to ensure test set ups

are complete
D. Mapping the Step Definition declarations

to imperative code
E. Running tests that depend on application

state

VII. Selenium and Web Interface Testing

A. Selenium basics and setting up a
selenium project

B. Before and After methods
C. Navigating around the web app and

running tests
D. Using assertions to evaluate web results

VIII. Page Object Pattern

A. Using a layer of indirection – pages as
classes

B. Setting up a page object project structure
C. Exposing functionality of pages
D. Page object factories

IX. Web Services

A. Review of Service Oriented Architecture
B. RESTful and SOAP based web services
C. Best practice: Testing behind the interface
D. Testing the web service transport

implementation
E. Working with JSon data
F. Best practices for working with web

services

X. Summary

A. Review of the course
B. How to move forward and apply what has

been learned
C. Other topics requested by students
D. Assessment of knowledge and skills

gained

