

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o
u
rs

e
 O

u
tl
in

e

MOC 40555 A Microsoft Security Workshop: Implementing PowerShell
Security Best Practices

Course Summary

Description

Introduced in 2006, Windows PowerShell is a scripting language, a command-line shell, and a scripting platform built
on Microsoft .NET Framework. Despite the scripting designation, Windows PowerShell features a range of
characteristics common for programming languages, including its object-oriented nature, extensibility, C#-like syntax,
and the ability to interact directly with .NET classes, their properties, and methods. The primary objective of Windows
PowerShell was to help IT professionals and power users control and automate the administration of the Windows
operating system and applications that run on Windows.

To take advantage of the benefits that Windows PowerShell has to offer, while at the same time, minimize security-
related risks, it is essential to understand the primary aspects of Windows PowerShell operational security. Another
aspect that is critical to consider in the context of this course is the role of Windows PowerShell in security exploits.

This 1-day Instructor-led security workshop provides discussion and practical hands-on training for PowerShell. you
will learn about PowerShell fundamentals, including its architectural design, its editions and versions, and basics of
interacting with PowerShell

You will then explore the most common Windows PowerShell-based techniques employed by hackers in order to
leverage existing access to a Windows operating system to facilitate installation of malicious software, carry out
reconnaissance tasks, establish its persistency on the target computer, and promote lateral movement. You will also
review some of Windows PowerShell-based security tools that facilitate penetration testing, forensics, and reverse
engineering of Windows PowerShell exploits. To conclude the course, you will provide a summary of technologies
recommended by the Blue Team that are geared towards implementing comprehensive, defense-in-depth security
against Windows PowerShell-based attacks.

This workshop is part of a larger series of Workshops offered by Microsoft on the practice of Security. While it is not
required that you have completed any of the other courses in the Security Workshop series before taking this
workshop, it is highly recommended that you start with the first course in the series, Microsoft Security Workshop:
Enterprise Security Fundamentals.

 40551A: Microsoft Security Workshop: Enterprise Security Fundamentals

 40552A: Microsoft Security Workshop: Managing Identity

 40553A: Microsoft Security Workshop: Planning for a Secure Enterprise - Improving Detection

 40554A: Microsoft Security Workshop: Implementing Windows 10 Security Features

 40555A: Microsoft Security Workshop: Implementing PowerShell Security Best Practices.

Objectives

After taking this course, students will be able to:

 Provide an overview of Windows PowerShell

 Describe PowerShell editions and versions

 Install and use Windows PowerShell and PowerShell Core

 Manage execution of local PowerShell scripts

 Manage remote execution of Windows PowerShell

 Manage remote execution of PowerShell Core

 Describe security implications of using Constrained Language Mode

 Describe the architecture and components of Windows PowerShell DSC

 Recommend Windows PowerShell auditing and logging configuration

 Provide examples of Windows PowerShell-based attacks

 Use Windows PowerShell-based security tools

 Provide an overview of Windows PowerShell-based security-related technologies

 Implement Windows PowerShell logging by using Desired State Configuration (DSC)

 Identify and mitigate Windows PowerShell-based exploits

 Implement Just Enough Administration (JEA)

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o
u
rs

e
 O

u
tl
in

e

MOC 40555 A Microsoft Security Workshop: Implementing PowerShell
Security Best Practices

Course Summary (cont’d)

Topics

 PowerShell Fundamentals

 PowerShell Operational Security

 Implementing PowerShell-based Security

 Windows PowerShell-based Exploits and
their Mitigation

Audience

This course is intended for IT Professionals that require a deeper understanding of Windows PowerShell security
related features and exploits and to increase their knowledge level through a predominately hands-on experience
implementing Windows PowerShell security features.

Prerequisites

In addition to their professional experience, students who take this training should already have the following
technical knowledge:

 A good foundation in accessing and using simple Windows PowerShell commands

 The current cybersecurity ecosystem

 Experience with Windows Client and Server administration, maintenance, and troubleshooting.

 Basic experience and understanding of Windows networking technologies, to include Windows Firewall
network setting, DNS, DHCP, WiFi, and cloud services concepts.

 Basic experience and understanding of Active Directory, including functions of a domain controller, sign on
services, and an understanding of group policy.

 Knowledge of and relevant experience in systems administration, using Windows 10.

Learners who take this training can meet the prerequisites by obtaining equivalent knowledge and skills through
practical experience as a Security Administrator, System Administrator, or a Network Administrator. Learners should
have a good foundation in accessing and using simple Windows PowerShell commands. This knowledge can be
obtained in INF210x, Windows PowerShell Basics.

Duration

One day

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o
u
rs

e
 O

u
tl
in

e

MOC 40555 A Microsoft Security Workshop: Implementing PowerShell
Security Best Practices

Course Outline

I. PowerShell Fundamentals
Introduced in 2006, Windows PowerShell is a
scripting language, a command-line shell, and a
scripting platform built on Microsoft .NET
Framework. Despite the scripting designation,
Windows PowerShell features a range of
characteristics common for programming
languages, including its object-oriented nature,
extensibility, C#-like syntax, and the ability to
interact directly with .NET classes, their properties,
and methods. The primary objective of Windows
PowerShell was to help IT professionals and power
users control and automate the administration of
the Windows operating system and applications
that run on Windows. With the introduction of .NET
Core in 2016, Microsoft extended the scope of
PowerShell to other operating system platforms,
leading to an open-source, GitHub-hosted project,
named PowerShell Core. You can use PowerShell
Core on macOS 10.12, a variety of 64-bit Linux
distributions, in addition to the 32-bit and 64-bit
Windows operating system, including Windows 10
running on Advanced Reduced Instruction Set
Computing Machine (ARM) devices. In this
module, you will learn about PowerShell
fundamentals, including its architectural design, its
editions and versions, and basics of interacting
with PowerShell.

A. Overview of Windows PowerShell
B. PowerShell editions and versions
C. Running PowerShell

II. PowerShell Operational Security
To take advantage of the benefits that Windows
PowerShell has to offer, while at the same time,
minimize security-related risks, it is essential to
understand the primary aspects of Windows
PowerShell operational security. In this module,
you will learn about enhancing operating system
security by leveraging built-in Windows PowerShell
features and technologies that are part of the
Windows PowerShell operational environment.
Another aspect that is critical to consider in the
context of this module is the role of Windows
PowerShell in security exploits. According to
empirical data, in majority of cases, Windows
PowerShell is used as a post-exploitation tool. This
implies that, at the point where a Windows
PowerShell session is launched, an attacker

already gained access to the security context in
which the target system or the target user
operates. This is the type of scenario that this
module will focus on. In this case, Windows
PowerShell serves as powerful and extremely
flexible engine for executing arbitrary tasks on the
local and remote computers, which, incidentally, is
the same reason that made Windows PowerShell
extremely popular among system administrators.
There are obviously other types of attacks which
rely on Windows PowerShell to gain unauthorized
access to a target system. In this type of scenario,
Windows PowerShell serves as an exploitation
tool. We will explore these types of attacks in the
last module of this course.

A. Managing Local Script Execution
B. Managing remote execution capabilities of

Windows PowerShell
C. Managing remote execution capabilities of

PowerShell Core
D. Language Mode

III. Implementing PowerShell-based Security
In the previous module, you learned about a
number of security-related features built into
Windows PowerShell and technologies that are
part of the Windows PowerShell operational
environment that help you with their enforcement.
The purpose of this module is to present the most
common and effective methods of leveraging
Windows PowerShell to enhance operating system
security. These methods include:> Protecting from
unintended configuration changes by relying on
PowerShell Desired State Configuration (DSC)>
Implementing the principle of least privilege in
remote administration scenarios by using Just
Enough Administration (JEA)> Tracking and
auditing events that might indicate exploit attempts
by using Windows PowerShell logging

A. Windows PowerShell DSC
B. Just Enough Administration (JEA)
C. Windows PowerShell Auditing and

Logging

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o
u
rs

e
 O

u
tl
in

e

MOC 40555 A Microsoft Security Workshop: Implementing PowerShell
Security Best Practices

Course Outline (cont’d)

IV. Windows PowerShell-based Exploits and their
Mitigation
Organizations cannot comprehensively identify
gaps in security detection and response by solely
focusing on breach prevention strategies.
Understanding how to not only protect but also to
detect and respond to breaches is just as
important—if not more so—than taking action to
prevent a breach from occurring in the first place.
By planning for the worst-case scenarios through
Red Teaming (real-world attack and penetration),
organizations can develop the necessary
capabilities to detect attempted exploits and
significantly improve responses associated with
security breaches. Red Teaming has become one
of the most essential parts of developing and
securing Microsoft’s platforms and services. The
Red Team takes on the role of sophisticated
adversaries and allows Microsoft to validate and
improve security, strengthen defenses and drive
greater effectiveness of the entire security
program. Red Teams enable Microsoft to test
breach detection and response as well as
accurately measure readiness and impacts of real-
world attacks. The purpose of the Blue Team is
looking for creative and reliable defenses to detect
and foil attacks orchestrated by the Red Team. The
Blue Team is comprised of either a dedicated set
of security responders or members from across the
security incident response, Engineering and
Operations organizations. Regardless of their
make-up, they are independent and operate
separately from the Red Team. The Blue Team
follows established security processes and uses
the latest tools and technologies to detect and
respond to attacks and penetration. In this module,
we will first approach the Windows PowerShell-
based security from the Red Team’s perspective.

We will explore the most common Windows
PowerShell-based techniques employed by
hackers in order to leverage existing access to a
Windows operating system to facilitate installation
of malicious software, carry out reconnaissance
tasks, establish its persistency on the target
computer, and promote lateral movement. We will
also review some of Windows PowerShell-based
security tools that facilitate penetration testing,
forensics, and reverse engineering of Windows
PowerShell exploits. To conclude the module and
the course, we will provide a summary of
technologies recommended by the Blue Team that
are geared towards implementing comprehensive,
defense-in-depth security against Windows
PowerShell-based attacks. There are many
documented exploits that utilize Windows
PowerShell capabilities to carry out attacks that
either target security flaws present in unpatched or
out-of-date systems or to laterally expand the
scope of such attacks once a single system is
compromised. Note that the overview of such
exploits presented in this module is not meant to
be exhaustive. Our intention is to illustrate common
patterns that such exploits follow and highlight the
importance of a comprehensive defense in-depth
strategy.

A. Windows PowerShell-based attacks
B. Windows PowerShell-based security tools
C. Summary of Windows PowerShell

security-related technologies
Lab : Implementing Windows PowerShell
Security

 Implement Windows PowerShell Logging
by using DSC

 Carry out a Windows PowerShell-based
exploit

 Implement Just Enough Administration

