

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o

u
rs

e
 O

u
tl
in

e

Intermediate/Advanced Java 11

Course Summary

Description

This is a modern, fast-paced course suitable for developers with some previous experience in working with
Java and Object-Oriented (OO) programming. The course can also be delivered to developers
experienced in other OO languages (Python, C++, C#) but with limited Java exposure, as well as used as
an advanced Java course for more experienced developers. There are numerous optional parts allowing
you to tailor the coverage to your group.

It includes an accelerated, yet thorough, hands-on review of Java foundational concepts, with attention
given to OO design and implementation principles. This review also includes an overview of newer
language features such as the Date/Time API (Java 8+), type inference with var, and switch expressions.

It then moves on to comprehensive coverage of more advanced topics in Java and OO development to
provide participants with a strong grounding to use Java in a sophisticated and productive manner. This
includes in-depth coverage of functional programming with lambdas and streams, as well as the Java
Platform Module System (JPMS). Java modules presents a fundamental shift in how applications are
organized, and interconnected to the libraries they use. Migration strategies are also covered, including a
step-by-step case study.

This course covers far more than an introductory course, including important topics such as UML and
Design Patterns, and using composition vs. inheritance, which are all key to creating well-structured OO
systems. After these important areas, it moves on to the advanced Java topics described above. It teaches
a number of useful techniques that enhance productivity and good system design - which may otherwise
take Java developers years to absorb on their own.
Unit testing is stressed throughout the course, with most labs implemented as JUnit tests.
The course is very hands-on, including numerous code examples and programming labs that reinforce the
concepts presented, so that attendees can immediately employ what they’ve learned in their current
projects.

It is designed to be flexible, and can be customized to fit your needs. Be prepared to work hard and learn a
great deal!

Objectives
At the end of this course, students will be able to:

• Solidify Java foundational knowledge, including the important contracts of class Object

• Understand the uses and consequences of inheritance and composition, and reinforce the role of
interfaces

• Reinforce fundamental OO principles such as cohesion, coupling, and polymorphism

• Use the JUnit testing framework and become fluent in writing assertions to verify correct program
behavior

• Familiarity with UML modeling in class diagrams and sequence diagrams

• Use advanced techniques for object creation, including factories and singletons

• Use established design patterns for object composition, including Strategy, Decorator, and Facade

• Write and use generic classes and methods

• Learn the use cases for inner classes and refactor existing code to use them when appropriate

• Create and use custom annotations

• Be familiar with reflection and how to use it
Understand the role of functional interfaces

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o

u
rs

e
 O

u
tl
in

e

Intermediate/Advanced Java 11

Course Summary (cont’d)

• Understand lambda expressions and method references, and use them to pass behavior
(methods)

• Use the Stream API to perform complex processing of collections and other input sources

• Create and use Java modules, understanding module descriptors, modular JARs, exports and
dependencies, and the modulepath

• Understand the structure and behavior of the modular JDK, and how it supports modular
applications as well as legacy classpath-based code

• Migrate classpath-based applications to Java 11, understanding the stages of migration and
options available

Topics

• Review - Basics

• Review (Inheritance and Interfaces)

• JUnit

• Collections and Generics

• Techniques of Object Creation

• Using Composition and Inheritance
Effectively

• Inner Classes

• Annotations

• Reflection

• Lambda Expressions

• Streams

• Introduction to Modules

• Working with Modules

Audience

This is a modern, fast-paced course suitable for developers with some previous experience in working with
Java and Object-Oriented (OO) programming. The course can also be delivered to developers
experienced in other OO languages (Python, C++, C#) but with limited Java exposure, as well as used as
an advanced Java course for more experienced developers. There are numerous optional parts allowing
you to tailor the coverage to your group.

Prerequisites

Working knowledge of Java programming, including use of inheritance, interfaces, and exceptions.

Duration

Five days

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o

u
rs

e
 O

u
tl
in

e

Intermediate/Advanced Java 11

Course Outline

I. Preface: Java State of the Union

A. Java Release Cycle
B. New Java Versions

II. Review - Basics

A. Java Environment
B. Classes and Objects
C. Instance Variables, Methods,

Constructors, Static Members
D. OO Principles: Data Encapsulation,

Cohesion
E. Object Contracts: toString(), equals()

and hashCode(), Comparable and
Comparator

F. Packages, Enums, Arrays
G. Exceptions
H. Date and Time API
I. New Language Features

III. Review (Inheritance and Interfaces)

A. UML Overview
B. Inheritance
C. Definition and IS-A Relationship
D. Method Overriding, @Override
E. OO Principles: Principle of

Substitutability, Polymorphism and
Encapsulation of Type, Coupling, Open-
Closed Principle

F. Constructor Chaining
G. Interfaces
H. Defining and Implementing, Interface

Types
I. Interface Inheritance
J. New Interface Features (Java 8+)
K. Default Methods, Static Methods
L. Functional Interfaces
M. Guidelines

IV. JUnit

A. Overview
B. Tests, Assertions, and Fixtures
C. Writing and Running Tests
D. Assertions
E. Test Fixtures, @Before and @After,

@BeforeClass and @AfterClass
F. Testing for Exceptions
G. Best Practices and Test-Driven

Development Overview (TDD)

V. Collections and Generics
A. Collections Overview
B. Generics and Type-Safe Collections
C. Diamond Operator
D. Lists, Sets, and Maps
E. Interfaces and Contracts
F. Iteration and Autoboxing
G. Utility Classes - Collections and Arrays
H. Writing Generic Classes
I. Inheritance with Generic Types
J. Wildcard Parameter Types
K. Type Erasure

VI. Techniques of Object Creation

A. Design Patterns Overview
B. Controlling Object Creation
C. Limitations of new Operator, Alternative

Techniques
D. Singleton Pattern
E. Simple Factory
F. Factory Method Pattern
G. Other Techniques
H. Named Objects, JNDI
I. Dependency Injection Frameworks

VII. Using Composition and Inheritance

Effectively
A. Inheritance and Composition - Pros and

Cons
B. Composition and Delegation
C. HAS-A, USES Relationships
D. Strategy Pattern
E. Decorator Pattern
F. Façade and Other Patterns
G. Façade, Proxy, Template Method

VIII. Inner Classes

A. Overview and Motivation
B. Stronger Encapsulation, Rules and

Caveats
C. Defining and Using Inner Classes
D. Member-Level, Method-Local,

Anonymous Classes
E. Static Nested Classes
F. Nested Classes, Nested Interfaces,

Nested Enums

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o

u
rs

e
 O

u
tl
in

e

Intermediate/Advanced Java 11

Course Outline (cont’d)

IX. Annotations

A. Overview
B. Using Annotations
C. Target and Retention Policy
D. Annotation Parameters, Parameter

Shortcuts
E. Writing Custom Annotations
F. Syntax, Using the Meta-Annotations
G. Using a Custom Annotation

X. Reflection

A. Overview and API
B. The Class Called Class
C. Obtaining and Inspecting Class Objects
D. Working with Objects Reflectively
E. Creating Instances, Invoking Methods,

Setting Field Values

XI. Lambda Expressions

A. Functional Interfaces and Lambdas
B. Target Context
C. Using Lambda Expressions
D. Syntax, Lambda Compatibility
E. Variable Capture
F. Type Inference
G. Method References
H. Three Types of Method References
I. Refactoring Lambdas into Method

References

XII. Streams

A. Overview
B. Streams vs. Collections
C. Anatomy of a Stream
D. Understanding the Stream API
E. Intermediate Operations and Stream

Pipeline
F. Java 8 Functional Interfaces: Predicate,

Comparator, Function
G. Stream Processing
H. Filtering, Sorting, Mapping
I. Terminal Operations
J. Collectors
K. Concepts
L. Partitioning and Grouping

XIII. Introduction to Modules

A. Motivation and Overview
B. Types of Modules
C. Modular JDK
D. Our Approach

XIV. Working with Modules

A. Defining and Using Modules
B. Services
C. Compatibility and Migration
D. Conclusion

