

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational
purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically

"Charting the Course ...

... to Your Success!"

Applying OOAD using UML2.0

Course Summary

Description

This course focuses on the advantages of the OO paradigm and domain modeling in reducing the
representational gap between a target domain and the software application itself. Minimizing this gap leads to
more effective solutions that are both flexible and robust. The modeling notation taught and used in conjunction
with the course is the industry standard UML (Unified Modeling Language) 2.0. UML provides a programming
language independent framework for the analysis, design, programming and testing of software applications.
Using a combination of UML and various techniques for analysis and design, the course relates Object Oriented
concepts to modeling complex problems. Models built using these techniques have a very high success rate
when turned into working code.

Objectives
At the end of this course, students will be able to:

• Learn the three pillars of building a system;
The Model, The Process, The Best
Practices

• Have a good, working definition of object-
oriented programming

• Understand the object oriented model,
including types, objects, encapsulation,
abstraction, messaging, protocols,
inheritance, polymorphism, relationships,
and coupling, strengths and weaknesses

• Understand the concept of representational
gap between an application and its targeted
domain

• Relate how Domain Modeling minimizes the
representational gap between domain and
application

• Learn how to read and create the most
important UML diagrams

• Recognize the difference between analysis
and design

• Produce a requirements analysis
• Create Use Cases, recognizing and avoiding

bad use cases
• Perform object discovery using such tools as

category lists and use cases to harvest
candidate objects

• Create a static conceptual model of your
system

• Create a dynamic behavioral model of your
system

• Understand how to move from analysis to
design

• Effectively identify relationships amongst
objects, understanding when to show those
relationships and when not to

• Effectively assign responsibilities using the
patterns and principles of GRASP (General
Responsibility Assignment Software
Patterns)

• Understand Design Patterns and their
importance

• Apply Design Patterns to refine your model
• Understand the uses of inheritance, where it

is appropriate, and where it is not
• Recognize the abuse of inheritance
• Understand the importance and use of

interfaces
• Recognize rich versus anemic domain

models
• Understand how to move from design to

implementation

PT6390_APPLYINGOOADUSINGUML20.DOC

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational
purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically

"Charting the Course ...

... to Your Success!"

Applying OOAD using UML2.0

Course Summary (cont’d)

Topics

• Introduction to Modeling and OOAD
• Classes and Objects
• Relationships
• Use Cases
• Use Case Scenarios
• Conceptual Modeling
• Domain Behavior Modeling
• Discovering Potential Objects using CRC

Cards

• Static Design Concepts
• Dynamic Design Concepts
• Domain Design
• Detailed Design
• Summary & Conclusion
• Remaining UML 2.0 Diagrams
• States and Activities

Audience

This course is designed for developers who specify, design and develop software and applications using
traditional/formal/structured methods and want to learn how to apply good practices to OO design and analysis.

Prerequisites

Students should have a working knowledge of developing software applications. Designing and analysis
experience is also extremely beneficial. This is not a coding class.

Duration

Five days

PT6390_APPLYINGOOADUSINGUML20.DOC

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational
purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically

"Charting the Course ...

... to Your Success!"

Applying OOAD using UML2.0

Course Outline

I. Introduction to Modeling and OOAD
A. Building Models
B. Notation
C. Domains
D. The Process of OO Analysis and Design
E. Overview of UML 2.0

II. Classes and Objects

A. Objects Provide a Service
B. Abstractions
C. Responsibilities and Operations
D. Overview of GRASP principles
E. Messages and Public Interfaces
F. Instances
G. Classes
H. Instantiation
I. Encapsulation
J. UML Class and Instance Diagramming

III. Relationships

A. Static Relationships
B. Dependencies
C. Associations
D. Navigability
E. Whole/Part Associations
F. Composition
G. Generalization/Specialization

Relationships
H. Inheritance of Methods and Method

Overriding
I. Abstract Classes
J. Dynamic Relationships
K. Sequence Diagrams
L. Communication Diagrams

IV. Use Cases

A. Discovering the Use Cases
B. Actors
C. Use Case
D. Caveats!
E. Extending Use Cases
F. Generalizations

V. Use Case Scenarios

A. Scenarios
B. Primary and Secondary Scenarios
C. Essential and Real Scenarios

D. Documenting Use Cases and Scenarios
E. Use Case Benefits
F. Conceptual Modeling
G. Conceptual Modeling
H. Concepts
I. Identifying Concepts
J. Mapmaking Principles
K. Attributes versus Concepts
L. Specification or Description
M. Associations
N. Common Association List

VI. Domain Behavior Modeling

A. Domain Behavior Modeling
B. Importance of Understanding Dynamic

Behavior
C. System Sequence Diagrams
D. Contracts

VII. Discovering Potential Objects using CRC

Cards
A. Discovering/Harvesting Objects
B. Brainstorming for Classes
C. CRC cards & CRC Steps

VIII. Static Design Concepts

A. Visibility of Attributes and Operations
B. Multiplicity of Objects
C. Interfaces and Components
D. Design Complex Systems from

Components
E. Identifying "Good" Classes
F. Multiplicity of Associations
G. Ternary Relationships
H. Role and Role Names
I. Association Qualification
J. Association Class
K. Whole/Part Associations
L. Extensibility Mechanisms:
M. Abstract Classes
N. Types and Substitutability
O. Polymorphism
P. Packages
Q. Using Packages
R. Component Diagrams

PT6390_APPLYINGOOADUSINGUML20.DOC

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational
purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically

"Charting the Course ...

... to Your Success!"

Applying OOAD using UML2.0

Course Outline (cont’d)

IX. Dynamic Design Concepts
A. Sequence Diagrams
B. Business Rules
C. Verifying Completeness
D. Advanced Sequencing
E. Concurrent Sequences
F. Activity Diagrams: Swimlanes

X. Domain Design

A. Iterative Development
B. Domain Design
C. Detailed Design
D. Forming the Architectural vision
E. Low Coupling Examined

XI. Detailed Design

A. Detailed Design Steps
B. Detailed Design Activities
C. GRASP patterns/principles revisited
D. Controller
E. Creator
F. Information Expert
G. Law of Demeter
H. Low Coupling/High Cohesion
I. Polymorphism
J. Pure Fabrication
K. Good/Bad packaging principles
L. Coupling (allowed and/or required

communication paths), layering, and
dependencies

M. Patterns In Design
N. Mapping to Databases
O. Mapping to User Interfaces
P. About Frameworks
Q. Designing Components and Interfaces

XII. Summary & Conclusion

A. Usage of OO Technology
B. Methodologies and Notation
C. Management Issues
D. Reuse

XIII. Remaining UML 2.0 Diagrams
A. Use Case Diagrams
B. Interaction Diagrams
C. Communication Diagrams
D. Sequence vs. Communication Diagrams
E. State Machine Diagrams
F. Statechart Diagram
G. Activity Diagram
H. Implementation Diagrams

XIV. States and Activities

A. State Diagrams: Object Lifecycles
B. Definitions
C. States
D. Entry and Exit Actions
E. Activity
F. Statecharts Model a Single Object
G. Analysis State Diagrams
H. Activity Diagrams: Swimlanes

PT6390_APPLYINGOOADUSINGUML20.DOC

