Deep Dive into Android Security

by Aleksandar Gargenta, Marakana Inc.

AnDevCon

The Android Developer Conference

video/slides at

http://mrkn.co/andsec

About Aleksandar (Sasa) Gargenta

 Developing in Java since 1996 — mostly server-side

* Hacking Android since 2008 — from the SDK to the kernel

e Teaching Java, Android, etc. at Marakana since 2005
— http://marakana.com/

* Founder & Organizer of San Francisco Java User Group
— http://www.sfjava.org/

 Founder & Organizer of San Francisco Android User Group
— http://www.sfandroid.org/

 Co-founder & co-organizer of San Francisco HTML5 User Group
— http://www.sfhtml5.org/

* Writing Android Internals for O'Reilly (ETA? yesterday)

 Worked on SMS, MMS, WAP Push, but also Linux and system
administration in past life

V6 (M) Marakana

Overview

 Why care?

* Android Security Model

 Permissions on Android

* Encryption on Android

* Device Admin

* Rooting Android Devices

* Anti-rooting? ASLR? SE-Linux? Locking bootloaders?
* Tap-jacking

 Developer Best Practices

e Other concerns

Why Care?

"Scary Android security hole in 99% of phones: PANIC!"
— Computerworld

"HTC promises fix for massive Android security flaw" — Q

MobileBeat ~—
"Android users are two and a half times as likely to m
encounter malware today than 6 months ago..." —

Lookout Mobile Threat Report

"Today’s mobile devices are a mixed bag when it (- J\ -)
comes to security... still vulnerable to many traditional \ A /
attacks....” - Carey Nachenberg, Symantec ~—
"Android Security Will Be Big News in 2011: 10 K/:\-)
Reasons Why" - eWeek \‘-‘ V/

"The growth rate in malware within Android is huge; in I l

4

the future there will definitely be more." - Nikolay
Grebennikov, CTO of Kaspersky

"Any time a technology becomes adopted and popular,
that technology will be targeted by the bad guys." - Jay
Abbott, PricewaterhouseCoopers LLP

V6 (M) marakana

Foundations of Android Security

* Application Isolation and Permission-Control
— Can we control what applications are able to do?
— Can a misbehaving app affect the rest of the system?

* Application "Provenance”
— Can we trust the author of an app?
— Can we trust our apps to be tamper-resistant?

* Data Encryption
— |s our data safe if our device is hacked/lost/stolen?

* Device Access Control
— Can we protect our device against unauthorized use?

V6 (M) Marakana

Android Stack (revisited

Applications

(Home > (Contacts) (Phone > (Browser)
Providers

Activity Window Vibrator WiFi Battery
Service Service Service Service Service

Package Telephony Resource Location Notification
Service Service Manager Service Service

Native Layer

(S””ace > (Media > (sQLite > (ssL > [Android Runtime |
Manager Framework
(OpenGL) (vold > (netd > (WebKit >

(libwifi > (Iibcamera) (libgps > (libc > M
Display Camera Linux Kernel GPS Binder
(Driver) (Driver) Driver Driver

Keypad WiFi (Audio) (Power)
(Driver) (Driver) Driver Mgmt

Android Application Isolation

Android OS
installd com.far.app3
(root) (app_93)
netd com.bar.app2
(root) (app_82)
vold servicemanager zygote system_server com.foo.app1
(root) (root) (root) (system) (app_41)
Native Native App Dex
Code Code Dex Code Dex Code Code .
Dalvik VM Dalvik VM Dalvik VM
: " Shared Libs :"Shared Libs " :"Shared Libs " . Shared Libs . Shared Libs : |-
JNI NI App/dNI | [:
System System System System System
HAL HAL HAL HAL HAL _
Kernel

(M) marakana

Android Application Isolation

* By default, each app runs in a separate process with a
distinct user/group ID (fixed for the lifetime of the app)

— Possible for multiple apps to share UID and process

— Based on decades-old, well-understood UNIX security
model (processes and file-system permissions)

* Application-framework services also run in a separate
process (system server)

* Linux kernel is the sole mechanism of app sandboxing
* Dalvik VM is not a security boundary

— Coding in Java or C/C++ code — no difference
— Enables use of JNI (unlike JavaME!)

e Same rules apply to system apps

V6

(M) marakana

Default Android Permissions Policy

Android OS
installd com.far.app3
(root) X (app_93)
netd com.bar.app2
(root) X (app_82)
vold servicemanager zygote tem>erver | | com.foo.app1
(root) (root) (root) ste (app_41)
Native Native \ App Dex
Code A / — | Code —T— §~-£ex Code Dex COd NN Code
[—- X - DalvRVM—- 'y | Daivik VM | [N | Dalvik vM
----------------- . . AR R R AR SRR N P ----------------.
Shared Libs : |#7: Shared Libs : Shared Libs 1™ | : SharedLibs :
INL | N | § App/JNI
T ' . : . // : N I
System |: [f :| System |: :| System |: E Sy?v/ : | System |: [F
| ; ANE == |
HAL o HAL HAL | : X HAL | HAL]
: 7 S
... -//
»
Kernel

(M) marakana

Default Android Permissions Policy

* No app can do anything to adversely affect
— Other apps
— The system itself
— The user of the device

* So, by default, apps cannot:
— Read*/write files outside their own directory
— Install/uninstall/modify other apps
— Use other apps' private components
— Access network
— Access user's data (contacts, SMS, email)
— Use cost-sensitive APIs (make phone calls, send SMS, NFC)
— Keep device awake, automatically start on boot, etc.

V6 (M) marakana

e Actually, apps can* talk to
other apps via
— Intents
— |PC (a.k.a. Binder)
— ContentProviders

Otherwise, to escape our
sandbox, we need to use
permissions

— Some permissions are only
available to system apps

Built-in Android Permissions

ACCESS_FINE_LOCATION, ACCESS_NETWORK_STATE,
ACCESS_WIFI_STATE, ACCOUNT MANAGER,
BLUETOOTH, BRICK, CALL_ PHONE, CAMERA,
CHANGE_WIFI_STATE, DELETE_PACKAGES,

INSTALL PACKAGES, INTERNET, MANAGE_ACCOUNTS,
MASTER_CLEAR, READ CONTACTS, READ LOGS,

READ SMS, RECEIVE_SMS, RECORD AUDIO,
SEND_SMS, VIBRATE, WAKE_LOCK, WRITE_ CONTACTS,
WRITE_SETTINGS, WRITE_SMS, ...

http://developer.android.com/reference/android/Manifest.permission.html

V6 (M) marakana

Example: Buddy Tickler App

* For example, an app that vibrates your phone any
time you get in close vicinity to a friend would
need to use at least the following permissions:

* App's AndroidManifest.xml:

<manifest package="com.marakana.android.trackapp" ..>

<uses-permission
android:name="android.permission.ACCESS FINE LOCATION"/>

<uses-permission
android:name="android.permission.INTERNET" />

<uses-permission
android:name="android.permission.VIBRATE" />

</manifest>

Logical Permission Enforcement

FooUsingApp system_server
T Dalvik VM ; T DalvikvMmTT T
: : Android :
L L Permission b .
f FooConsumingActivity : Check — — & 4 FooService
¢ L) E I RN 4 y,
Y N | ; y
(3 N | s . N
; FooNative [FooManager T T T T ; FooNative
O r N
libfoo_jni Provides libfoo_jni
T UID/PID - * 7
]
File Permission Denied — File Permlssilon Granted

v v
/dev/binder > { /de;ifoo }

/sys/foo/enable

Kernel

(M) marakana

Permission Enforcement Example

* Onlythe systemuser (i.e. SS proc) can write to the vibrator driver:
$ adb shell 1s -1 /sys/class/timed output/vibrator/enable
-rw-r—--r-- system system 4096 2011-09-30 23:23 enable

* Onlyapps with android.permission.VIBRATE permissions can

access VibratorSevice.vibrate (..) method:
frameworks/base/services/java/com/android/server/VibratorService.java

package com.android.server;
public class VibratorService extends IVibratorService.Stub {

public void vibrate(long milliseconds, IBinder token) {
if (mContext.checkCallingOrSelfPermission (
android.Manifest.permission.VIBRATE)
!= PackageManager.PERMISSION GRANTED) {
throw new SecurityException (N
"Requires VIBRATE permission");

(M) marakana

Kernel Permission Enforcement

* Some Android permissions directly map to group IDs, which are then
enforced by the kernel/FS:

/system/etc/permissions/platform.xml:
<permissions>

<permission name="android.permission.INTERNET" >
<group gid="inet" />

</permission>

<permission name="android.permission.CAMERA" >
<group gid="camera" />

</permission>

<permission name="android.permission.READ LOGS" >
<group gid="log" /> o

</permission>

<permission name="android.permission.WRITE EXTERNAL STORAGE" >
<group gid="sdcard rw" />

</permission> N

</permissions>

* Interesting example: android.permission.INTERNET -> inet
-> 3003 -> ANDROID_PARANOID_NETWORK(kerne| patch)

(M) marakana

Permission Granting

* Permissions are granted once, at the S

application install time s , \
_ Ok updates too @ Norton‘ Mobile Securit
— One exception, URI permissions Accept & download
¢ A||-Or-n0thing! Your messages
. Edit SMS or MMS, read SMS or MMS,
* But, can a+ewviee any user tell whether receivesus >
the combination of requested
el : Storage
permISSIOnS IS OK? (Can yOU?) Modify/delete USB storage contents 3
— Permissions marked as "normal" are
hidden behind "See all" System tools
. . Bluetooth administration, format
 What about combo of permissions e
across different apps from the same filesystems, prevent phone from

sleeping, retrieve running applications »

(malicious) author? (Apps can share)

V6 (M) Marakana

Permission Granting, Alternatives?

* Switch to dynamically granting permissions on
use or on start of each app ("session")?
— Annoying
— Hard to provide seamless app-switching
— Over-prompting leads to a conditioned-response
— Users already committed to the app

* Cannot make informed-decisions on whether to
grant permissions? Let app ratings + comments
from "sophisticated" users on Market help

V6 (M) Marakana

Appllcatlon Provenance

* Can we trust the developer of an application
we are about to install? (mostly, no)

e Can we trust that our apps are resistant to
tampering once installed? (mostly, yes)

* To get onto Android Market, a developer just
needs to register with Google and pay $25
with a valid credit card

— A mild deterrent against authors of malicious apps
* Apps can also be side-loaded (not on AT&T)

V6 (M) marakana

Application Provenance (Signhing)

e All apps (. apk files) must be digitally signed prior to
installation on a device (and uploading to Android
Market)

 The embedded certificate can be self-signed (no CA
needed!) and valid for 25+ years

* App signing on Android is used to:
_E I henbicitvof ¢ I he first install
— Ensure the authenticity of the author on updates

— Establish trust relationship among apps signed with the
same key (share permissions, UID, process)

— Make app contents tamper-resistant (moot point)
* An app can be signed with multiple keys

V6 (M) marakana

Application Provenance (Signhing)

* Lost/expired key? No way to

update the app(S) Lookout Security & An
e Stolen key? No way to revoke e
e How do we trust the authoron _wesor
the first install? Storage
Modify/delete USB storage contents 3
— Is this the real author, or an
. Your messages
ImpOSter? Can | check the cert? EditSMSongMS, read SMS or MMS,
. receive SMS >
— Has this app been vetted?
- GO by the number Of |nSta”S? §ZIssfen;ITc;g:)slication cache data,
disable keylock, make application
* Follow the Sheep? always rur){, modifyglobzﬁ)system

settings. nrevent nhone from sleenine.

V6 (M) Marakana

Application Provenance (Signhing)

* The result?
® Android.Rootcager
® Android.Pjapps
® Android.Bgserv
* All took advantage of weak trust relationship
(1D Take an existing (popular) app
@ Inject malicious code (e.g. a trojan)
(3 Re-package and re-sign with a new key/cert
4 Upload to market (or distribute via web)
(B Wait for the "sheep" to come (not really our fault)

V6 (M) Marakana

* Apps' files are private by default
— Owned by distinct apps' UIDs

* Exceptions
— Apps can create files that are
* MODE WORLD READABLE
* MODE WORLD WRITABLE

— Other apps (signed with the same key) can run with
the same UID — thereby getting access to shared files

— /mnt/sdcard is world-readable and world-writable
(with WRITE TO EXTERNAIL STORAGE)

Data Encryption

M VPN (IPSEC) with 3DES and AES and cert auth.
MVPN Client API available as of ICS/4.0
M 802.11 with WPA/2 and cert auth.
M OpenSSL | 234 3
M JCE (based on BouncyCastle provider)
MApache HTTP Client (supporting SSL)
Mjava.net.HttpsUrlConnection
— Using encryption well is non-trivial (e.g. IV)
— Does not help if the key is stored on the device

M Keychain API — apps can install and store user
certificates and CAs securely as of ICS/4.0

M Whole-disk encryption (requires >= 3.0)

V6 (M) marakana

Whole Disk Encryption

e Settings - Location & Security - Encryption - Encrypt
tablet

— Requires screen-lock password

— Encrypts /data partition with AES128 with CBC and
ESSIV:SHA256 (password combined with salt then SHA1'd)

— Disabling encryption requires device master reset

e Based on Linux' dm-crypt kernel feature
— /data as an encrypted block device (/dev/block/dm-0)

e User-password used directly (change requires re-encrypt!)

* Not hardware-accelerated: 54% degradation in |/O read
performance on Samsung Galaxy Tab 10.1

 Vulnerable to "Evil maid attack" and cold-boot attacks

V6 (M) Marakana

Digital Rights Management

- - Applications
Bind

inaer

* Android provides a
pluggable DRM
framework (APl >=11)

 Actual schemes
provided by OEMs

* Hides complexity of 1 H n [] [_—

DRM when accessing
rights-protected (or
plain) content under
various schemes

* Screen unlock pattern, pin,
password

 More options with device admin
(including password expiration,
encryption, auto-device-wipe, etc.)

e Low-level access to SIM card is not
available to apps
e But:

® SIM/SD Card can be simply ejected, n
bypassing screen unlock

® Cold-boot attacks

Enter password to unlock

Emergency call

V6 (M) marakana

Activate device administrator?

v Erase all data
Erase the phone's data without warning,
by performing a factory data reset

Change the screen-unlock

password
Change the screen-unlock password

Set password rules
Control the length and the characters
allowed in screen-unlock passwords

Monitor screen-unlock

attempts

Monitor the number of incorrect
passwords entered when unlocking the
screen, and lock the phone or erase all
the phone's data if too many incorrect
passwords are entered

Lock the screen
Control how and when the screen locks

i Activate H Cancel h

(M) marakana

Rooting

 Why root?
— Access to custom ROMs
— Reuse old hardware
— Remove offending system apps
— Get more speed
— Get better looks
— Because it's cool
— Rootkit ®

* But, it comes at a price

d

Rooting: How-to

Exploit a weakness of the Closkuorkiiod Reoerery 2304
existing ROM to gain root - ". Jractary ro

L w’,t _0 d:)mt ard
Flash the recovery partition " "“'f me y
with an alternative image _advanced

Download an alternative compatlble ROM
(already rooted) onto the /sdcard

Reboot into recovery, and flash the new ROM

Get root at any time with Superuser.apk
+ /system/bin/su

Or,aseasyas: $ fastboot oem unlock

V6 (M) marakana

Getting Root

* exploid: exploit a bug in udev (on Android
init/ueventd) to pass a fake message
(NETLINK KOBJECT UEVENT) with
executable FIRMWARE code to run as root

* rageagainstthecage: exploit a race-condition in
adbd to preempt its call to setuid () (to shell
user) leaving it running as root

* softbreak/gingerbreak: exploit a buffer-overrun
condition in vold (which runs as root) to execute
arbitrary code as root

V6 (M) Marakana

Dangers of Rooting

* App isolation » *é.i
» System/app permissions '

* Data-safeguards + encryption '

e Device administration

all fall-apart when we allow un-trusted code to run
as root (this is what malicious apps do)

Memory Security Protection

 Hardware-based No eXecute (NX) to prevent code
execution on the stack and heap

* ProPolice to prevent stack buffer overruns
* safe iop toreduce integer overflows

e Extensions to OpenBSD d1lmalloc to prevent double
free () vulnerabilities and to prevent chunk consolidation
attacks (against heap corruption)

* OpenBSD calloc to prevent integer overflows during
memory allocation

* Linuxmmap min addr () to mitigate null pointer
dereference privilege escalation

* But, what about shared libraries?

V6 (M) Marakana

Address Space Layout Randomization

e Shared libraries on Android are pre-linked*: their
address are fixed, for performance reasons

* Successful memory corruption attacks can easily return
to libc (i.e. execute arbitrary code)
 ASLR on Android (just a proposal at this time):

— Randomize offsets to shared libs and executables at system
upgrade-time

— Record offsets to undo randomization for OTA updates

— Detect brute-force guessing with cloud-based analysis
* http://bojinov.org/professional/wisec2011-mobileaslr-
paper.pdf
ASLR is finally a standard in ICS/4.0 (* no pre-linking?)

V6 (M) marakana

SE-Linux on Android

e SELinux allows us to run OS services with
minimum privileges (i.e. not root)

— Heavy use on the desktop/server-side

e SELinux on Android is possible, but hard

— Slow

— Requires rethinking on the security model for easier
configuration

— Does not support yaffs2

* Folks at Hitachi got it to work, but it seems stalled

A malicious app starts a security-
sensitive (e.g. system settings) activity

* |t then overlays a full-screen custom
notification dialog on top of the

targeted activity (like a game) — works
like Toasts

e User interacts with the custom
notification dialog, but her touch events
are passed down to the legitimate
activity

* In APl >=9 prevent with XML attr on Ul
filterTouchesWhenObscured
(or programmatically)

V6 (M) marakana

Developer Best Practices

* Avoid building apps that require root

* |If you are using encryption, be sure to know what
you are doing (e.g. use [Vs)

 Mark your application's components as
android:exported="false" unlessyou
are specifically building them for public use
— Don't trust Intent inputs/results (especially pending)
— Don't leak broadcast events you are sending out
— Use custom permissions to control access

V6 (M) Marakana

Custom Permissions

<manifest .. package="com.marakana.myapp" >
<permission
android:name="co.mrkn.perm.GET PASSWORD"
android:label="@string/get password label"
android:description="@string/get password desc"
androld:permissionGroup=
"androld.permission-group.PERSONAL INFO"

android:protectionLevel="dangerous" />

</manifest>

Requiring Permissions

e Statically, in AndroidManifest.xml on our
application components via attributes

— android:permission
— androild: readPermission
— android:writePermission

* Dynamically, on broadcast senders via

— aContext.registerReceiver (BroadcastReceiver,
String, Handler)

* Dynamically, in bound-services via

— aContext.checkCallingPermission (String)
— aContext.enforceCallingOrSelfPermission (String)

e e e e e e
Anti-malware

e Use PackageManager.getInstalledPackages (int) for
the initial scan of apps/packages against a known black-list

— E.g. check for package names, permissions, signatures

* Listenfor android.intent.action.PACKAGE ADDED
broadcasts and verify new apps
 Once a malicious app is found, offer the user a chance to delete it:
Uri packageURI =
Uri.parse ("package:com.malicous.app") ;
Intent uninstallIntent =
new Intent (
Intent .ACTION DELETE, packageURI);
startActivity (uninstallIntent) ;
* For personal use, consider something like:
— Lookout Security & Antivirus
— Norton Mobile Security

i Tt i

Other Security Concerns

* Push-based install from Android Market (GMail)
* Social-engineering

* Firewall

* Encryption of communication

e Compromised platform keys

* App obfuscation

* Protecting bootloader/recovery

* Security of skins

 OEM/Carrier OS upgrade cycles

 Questions? N

 More info: rm',
— http://mrkn.co/andsec (video of this talk) -

— http://source.android.com/tech/encryption/
android_crypto_implementation.html

— http://www.symantec.com/about/news/release/
article.jsp?prid=20110627_02
e Contact Info:
— http://marakana.com/
— sasa@marakana.com
— (@agargenta on Twitter
— aleksandar.gargenta@gmail.com on Google+

